This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural bijection from [ 0 , 1 ] to an arbitrary nontrivial closed interval [ A , B ] is a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icchmeo.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| icchmeo.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) | ||
| Assertion | icchmeo | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐹 ∈ ( II Homeo ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icchmeo.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | icchmeo.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) | |
| 3 | iitopon | ⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) | |
| 4 | 3 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
| 5 | 1 | dfii3 | ⊢ II = ( 𝐽 ↾t ( 0 [,] 1 ) ) |
| 6 | 5 | eqcomi | ⊢ ( 𝐽 ↾t ( 0 [,] 1 ) ) = II |
| 7 | 6 | oveq2i | ⊢ ( II Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) = ( II Cn II ) |
| 8 | 1 | cnfldtop | ⊢ 𝐽 ∈ Top |
| 9 | cnrest2r | ⊢ ( 𝐽 ∈ Top → ( II Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ⊆ ( II Cn 𝐽 ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( II Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ⊆ ( II Cn 𝐽 ) |
| 11 | 7 10 | eqsstrri | ⊢ ( II Cn II ) ⊆ ( II Cn 𝐽 ) |
| 12 | 4 | cnmptid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( II Cn II ) ) |
| 13 | 11 12 | sselid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( II Cn 𝐽 ) ) |
| 14 | 1 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 15 | 14 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
| 16 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 17 | 16 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℂ ) |
| 18 | 4 15 17 | cnmptc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝐵 ) ∈ ( II Cn 𝐽 ) ) |
| 19 | 1 | mpomulcn | ⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 20 | 19 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 21 | oveq12 | ⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝐵 ) → ( 𝑢 · 𝑣 ) = ( 𝑥 · 𝐵 ) ) | |
| 22 | 4 13 18 15 15 20 21 | cnmpt12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝐵 ) ) ∈ ( II Cn 𝐽 ) ) |
| 23 | 1cnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 1 ∈ ℂ ) | |
| 24 | 4 15 23 | cnmptc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 1 ) ∈ ( II Cn 𝐽 ) ) |
| 25 | 1 | subcn | ⊢ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 26 | 25 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 27 | 4 24 13 26 | cnmpt12f | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑥 ) ) ∈ ( II Cn 𝐽 ) ) |
| 28 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ ) | |
| 29 | 28 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℂ ) |
| 30 | 4 15 29 | cnmptc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝐴 ) ∈ ( II Cn 𝐽 ) ) |
| 31 | oveq12 | ⊢ ( ( 𝑢 = ( 1 − 𝑥 ) ∧ 𝑣 = 𝐴 ) → ( 𝑢 · 𝑣 ) = ( ( 1 − 𝑥 ) · 𝐴 ) ) | |
| 32 | 4 27 30 15 15 20 31 | cnmpt12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 1 − 𝑥 ) · 𝐴 ) ) ∈ ( II Cn 𝐽 ) ) |
| 33 | 1 | addcn | ⊢ + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 34 | 33 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 35 | 4 22 32 34 | cnmpt12f | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) ∈ ( II Cn 𝐽 ) ) |
| 36 | 2 35 | eqeltrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐹 ∈ ( II Cn 𝐽 ) ) |
| 37 | 2 | iccf1o | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) ∧ ◡ 𝐹 = ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ) |
| 38 | 37 | simpld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) ) |
| 39 | f1of | ⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) → 𝐹 : ( 0 [,] 1 ) ⟶ ( 𝐴 [,] 𝐵 ) ) | |
| 40 | frn | ⊢ ( 𝐹 : ( 0 [,] 1 ) ⟶ ( 𝐴 [,] 𝐵 ) → ran 𝐹 ⊆ ( 𝐴 [,] 𝐵 ) ) | |
| 41 | 38 39 40 | 3syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ran 𝐹 ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 42 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 43 | 42 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 44 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 45 | 43 44 | sstrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 46 | cnrest2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ran 𝐹 ⊆ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) → ( 𝐹 ∈ ( II Cn 𝐽 ) ↔ 𝐹 ∈ ( II Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) ) | |
| 47 | 14 41 45 46 | mp3an2i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐹 ∈ ( II Cn 𝐽 ) ↔ 𝐹 ∈ ( II Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 48 | 36 47 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐹 ∈ ( II Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |
| 49 | 37 | simprd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ◡ 𝐹 = ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) |
| 50 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) | |
| 51 | 14 45 50 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 52 | cnrest2r | ⊢ ( 𝐽 ∈ Top → ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ⊆ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) | |
| 53 | 8 52 | ax-mp | ⊢ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ⊆ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) |
| 54 | 51 | cnmptid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑦 ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |
| 55 | 53 54 | sselid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑦 ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
| 56 | 51 15 29 | cnmptc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐴 ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
| 57 | 51 55 56 26 | cnmpt12f | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 − 𝐴 ) ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
| 58 | difrp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐵 − 𝐴 ) ∈ ℝ+ ) ) | |
| 59 | 58 | biimp3a | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℝ+ ) |
| 60 | rpcnne0 | ⊢ ( ( 𝐵 − 𝐴 ) ∈ ℝ+ → ( ( 𝐵 − 𝐴 ) ∈ ℂ ∧ ( 𝐵 − 𝐴 ) ≠ 0 ) ) | |
| 61 | 1 | divccn | ⊢ ( ( ( 𝐵 − 𝐴 ) ∈ ℂ ∧ ( 𝐵 − 𝐴 ) ≠ 0 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 62 | 59 60 61 | 3syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 63 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 − 𝐴 ) → ( 𝑥 / ( 𝐵 − 𝐴 ) ) = ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) | |
| 64 | 51 57 15 62 63 | cnmpt11 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
| 65 | 49 64 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
| 66 | dfdm4 | ⊢ dom 𝐹 = ran ◡ 𝐹 | |
| 67 | 66 | eqimss2i | ⊢ ran ◡ 𝐹 ⊆ dom 𝐹 |
| 68 | f1odm | ⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) → dom 𝐹 = ( 0 [,] 1 ) ) | |
| 69 | 38 68 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → dom 𝐹 = ( 0 [,] 1 ) ) |
| 70 | 67 69 | sseqtrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ran ◡ 𝐹 ⊆ ( 0 [,] 1 ) ) |
| 71 | unitsscn | ⊢ ( 0 [,] 1 ) ⊆ ℂ | |
| 72 | 71 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 0 [,] 1 ) ⊆ ℂ ) |
| 73 | cnrest2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ran ◡ 𝐹 ⊆ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ⊆ ℂ ) → ( ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ↔ ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ) ) | |
| 74 | 14 70 72 73 | mp3an2i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ↔ ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ) ) |
| 75 | 65 74 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ) |
| 76 | 5 | oveq2i | ⊢ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn II ) = ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) |
| 77 | 75 76 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn II ) ) |
| 78 | ishmeo | ⊢ ( 𝐹 ∈ ( II Homeo ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ↔ ( 𝐹 ∈ ( II Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ∧ ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn II ) ) ) | |
| 79 | 48 77 78 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐹 ∈ ( II Homeo ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |