This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unit interval is a topological space. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iitopon | ⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 2 | unitssre | ⊢ ( 0 [,] 1 ) ⊆ ℝ | |
| 3 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 4 | 2 3 | sstri | ⊢ ( 0 [,] 1 ) ⊆ ℂ |
| 5 | xmetres2 | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ ( 0 [,] 1 ) ⊆ ℂ ) → ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∈ ( ∞Met ‘ ( 0 [,] 1 ) ) ) | |
| 6 | 1 4 5 | mp2an | ⊢ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∈ ( ∞Met ‘ ( 0 [,] 1 ) ) |
| 7 | df-ii | ⊢ II = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) | |
| 8 | 7 | mopntopon | ⊢ ( ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∈ ( ∞Met ‘ ( 0 [,] 1 ) ) → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
| 9 | 6 8 | ax-mp | ⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |