This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 12-Jun-2014) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptid.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmpt11.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| cnmpt1t.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐿 ) ) | ||
| cnmpt12.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmpt12.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | ||
| cnmpt12.c | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝑀 ) ) | ||
| cnmpt12.d | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) → 𝐶 = 𝐷 ) | ||
| Assertion | cnmpt12 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ∈ ( 𝐽 Cn 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptid.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmpt11.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 3 | cnmpt1t.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐿 ) ) | |
| 4 | cnmpt12.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 5 | cnmpt12.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | |
| 6 | cnmpt12.c | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝑀 ) ) | |
| 7 | cnmpt12.d | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) → 𝐶 = 𝐷 ) | |
| 8 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) | |
| 9 | 1 4 2 8 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) |
| 10 | 9 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) |
| 11 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐿 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ 𝑍 ) | |
| 12 | 1 5 3 11 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ 𝑍 ) |
| 13 | 12 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑍 ) |
| 14 | 10 13 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑍 ) ) |
| 15 | txtopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑌 × 𝑍 ) ) ) | |
| 16 | 4 5 15 | syl2anc | ⊢ ( 𝜑 → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑌 × 𝑍 ) ) ) |
| 17 | cntop2 | ⊢ ( ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝑀 ) → 𝑀 ∈ Top ) | |
| 18 | 6 17 | syl | ⊢ ( 𝜑 → 𝑀 ∈ Top ) |
| 19 | toptopon2 | ⊢ ( 𝑀 ∈ Top ↔ 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ) | |
| 20 | 18 19 | sylib | ⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ) |
| 21 | cnf2 | ⊢ ( ( ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑌 × 𝑍 ) ) ∧ 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ∧ ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝑀 ) ) → ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) : ( 𝑌 × 𝑍 ) ⟶ ∪ 𝑀 ) | |
| 22 | 16 20 6 21 | syl3anc | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) : ( 𝑌 × 𝑍 ) ⟶ ∪ 𝑀 ) |
| 23 | eqid | ⊢ ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) = ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) | |
| 24 | 23 | fmpo | ⊢ ( ∀ 𝑦 ∈ 𝑌 ∀ 𝑧 ∈ 𝑍 𝐶 ∈ ∪ 𝑀 ↔ ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) : ( 𝑌 × 𝑍 ) ⟶ ∪ 𝑀 ) |
| 25 | 22 24 | sylibr | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑌 ∀ 𝑧 ∈ 𝑍 𝐶 ∈ ∪ 𝑀 ) |
| 26 | r2al | ⊢ ( ∀ 𝑦 ∈ 𝑌 ∀ 𝑧 ∈ 𝑍 𝐶 ∈ ∪ 𝑀 ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) → 𝐶 ∈ ∪ 𝑀 ) ) | |
| 27 | 25 26 | sylib | ⊢ ( 𝜑 → ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) → 𝐶 ∈ ∪ 𝑀 ) ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) → 𝐶 ∈ ∪ 𝑀 ) ) |
| 29 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑌 ↔ 𝐴 ∈ 𝑌 ) ) | |
| 30 | eleq1 | ⊢ ( 𝑧 = 𝐵 → ( 𝑧 ∈ 𝑍 ↔ 𝐵 ∈ 𝑍 ) ) | |
| 31 | 29 30 | bi2anan9 | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) → ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ↔ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑍 ) ) ) |
| 32 | 7 | eleq1d | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) → ( 𝐶 ∈ ∪ 𝑀 ↔ 𝐷 ∈ ∪ 𝑀 ) ) |
| 33 | 31 32 | imbi12d | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) → ( ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) → 𝐶 ∈ ∪ 𝑀 ) ↔ ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑍 ) → 𝐷 ∈ ∪ 𝑀 ) ) ) |
| 34 | 33 | spc2gv | ⊢ ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑍 ) → ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) → 𝐶 ∈ ∪ 𝑀 ) → ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑍 ) → 𝐷 ∈ ∪ 𝑀 ) ) ) |
| 35 | 14 28 14 34 | syl3c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ∪ 𝑀 ) |
| 36 | 7 23 | ovmpoga | ⊢ ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑍 ∧ 𝐷 ∈ ∪ 𝑀 ) → ( 𝐴 ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) 𝐵 ) = 𝐷 ) |
| 37 | 10 13 35 36 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) 𝐵 ) = 𝐷 ) |
| 38 | 37 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) |
| 39 | 1 2 3 6 | cnmpt12f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐶 ) 𝐵 ) ) ∈ ( 𝐽 Cn 𝑀 ) ) |
| 40 | 38 39 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ∈ ( 𝐽 Cn 𝑀 ) ) |