This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural bijection from [ 0 , 1 ] to an arbitrary nontrivial closed interval [ A , B ] is a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icchmeo.j | |- J = ( TopOpen ` CCfld ) |
|
| icchmeo.f | |- F = ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) |
||
| Assertion | icchmeo | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> F e. ( II Homeo ( J |`t ( A [,] B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icchmeo.j | |- J = ( TopOpen ` CCfld ) |
|
| 2 | icchmeo.f | |- F = ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) |
|
| 3 | iitopon | |- II e. ( TopOn ` ( 0 [,] 1 ) ) |
|
| 4 | 3 | a1i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
| 5 | 1 | dfii3 | |- II = ( J |`t ( 0 [,] 1 ) ) |
| 6 | 5 | eqcomi | |- ( J |`t ( 0 [,] 1 ) ) = II |
| 7 | 6 | oveq2i | |- ( II Cn ( J |`t ( 0 [,] 1 ) ) ) = ( II Cn II ) |
| 8 | 1 | cnfldtop | |- J e. Top |
| 9 | cnrest2r | |- ( J e. Top -> ( II Cn ( J |`t ( 0 [,] 1 ) ) ) C_ ( II Cn J ) ) |
|
| 10 | 8 9 | ax-mp | |- ( II Cn ( J |`t ( 0 [,] 1 ) ) ) C_ ( II Cn J ) |
| 11 | 7 10 | eqsstrri | |- ( II Cn II ) C_ ( II Cn J ) |
| 12 | 4 | cnmptid | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> x ) e. ( II Cn II ) ) |
| 13 | 11 12 | sselid | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> x ) e. ( II Cn J ) ) |
| 14 | 1 | cnfldtopon | |- J e. ( TopOn ` CC ) |
| 15 | 14 | a1i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> J e. ( TopOn ` CC ) ) |
| 16 | simp2 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> B e. RR ) |
|
| 17 | 16 | recnd | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> B e. CC ) |
| 18 | 4 15 17 | cnmptc | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> B ) e. ( II Cn J ) ) |
| 19 | 1 | mpomulcn | |- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( J tX J ) Cn J ) |
| 20 | 19 | a1i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( J tX J ) Cn J ) ) |
| 21 | oveq12 | |- ( ( u = x /\ v = B ) -> ( u x. v ) = ( x x. B ) ) |
|
| 22 | 4 13 18 15 15 20 21 | cnmpt12 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> ( x x. B ) ) e. ( II Cn J ) ) |
| 23 | 1cnd | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> 1 e. CC ) |
|
| 24 | 4 15 23 | cnmptc | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> 1 ) e. ( II Cn J ) ) |
| 25 | 1 | subcn | |- - e. ( ( J tX J ) Cn J ) |
| 26 | 25 | a1i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> - e. ( ( J tX J ) Cn J ) ) |
| 27 | 4 24 13 26 | cnmpt12f | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> ( 1 - x ) ) e. ( II Cn J ) ) |
| 28 | simp1 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> A e. RR ) |
|
| 29 | 28 | recnd | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> A e. CC ) |
| 30 | 4 15 29 | cnmptc | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> A ) e. ( II Cn J ) ) |
| 31 | oveq12 | |- ( ( u = ( 1 - x ) /\ v = A ) -> ( u x. v ) = ( ( 1 - x ) x. A ) ) |
|
| 32 | 4 27 30 15 15 20 31 | cnmpt12 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> ( ( 1 - x ) x. A ) ) e. ( II Cn J ) ) |
| 33 | 1 | addcn | |- + e. ( ( J tX J ) Cn J ) |
| 34 | 33 | a1i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> + e. ( ( J tX J ) Cn J ) ) |
| 35 | 4 22 32 34 | cnmpt12f | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) e. ( II Cn J ) ) |
| 36 | 2 35 | eqeltrid | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> F e. ( II Cn J ) ) |
| 37 | 2 | iccf1o | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) /\ `' F = ( y e. ( A [,] B ) |-> ( ( y - A ) / ( B - A ) ) ) ) ) |
| 38 | 37 | simpld | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) ) |
| 39 | f1of | |- ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) -> F : ( 0 [,] 1 ) --> ( A [,] B ) ) |
|
| 40 | frn | |- ( F : ( 0 [,] 1 ) --> ( A [,] B ) -> ran F C_ ( A [,] B ) ) |
|
| 41 | 38 39 40 | 3syl | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ran F C_ ( A [,] B ) ) |
| 42 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 43 | 42 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( A [,] B ) C_ RR ) |
| 44 | ax-resscn | |- RR C_ CC |
|
| 45 | 43 44 | sstrdi | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( A [,] B ) C_ CC ) |
| 46 | cnrest2 | |- ( ( J e. ( TopOn ` CC ) /\ ran F C_ ( A [,] B ) /\ ( A [,] B ) C_ CC ) -> ( F e. ( II Cn J ) <-> F e. ( II Cn ( J |`t ( A [,] B ) ) ) ) ) |
|
| 47 | 14 41 45 46 | mp3an2i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( F e. ( II Cn J ) <-> F e. ( II Cn ( J |`t ( A [,] B ) ) ) ) ) |
| 48 | 36 47 | mpbid | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> F e. ( II Cn ( J |`t ( A [,] B ) ) ) ) |
| 49 | 37 | simprd | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> `' F = ( y e. ( A [,] B ) |-> ( ( y - A ) / ( B - A ) ) ) ) |
| 50 | resttopon | |- ( ( J e. ( TopOn ` CC ) /\ ( A [,] B ) C_ CC ) -> ( J |`t ( A [,] B ) ) e. ( TopOn ` ( A [,] B ) ) ) |
|
| 51 | 14 45 50 | sylancr | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( J |`t ( A [,] B ) ) e. ( TopOn ` ( A [,] B ) ) ) |
| 52 | cnrest2r | |- ( J e. Top -> ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( A [,] B ) ) ) C_ ( ( J |`t ( A [,] B ) ) Cn J ) ) |
|
| 53 | 8 52 | ax-mp | |- ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( A [,] B ) ) ) C_ ( ( J |`t ( A [,] B ) ) Cn J ) |
| 54 | 51 | cnmptid | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( y e. ( A [,] B ) |-> y ) e. ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( A [,] B ) ) ) ) |
| 55 | 53 54 | sselid | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( y e. ( A [,] B ) |-> y ) e. ( ( J |`t ( A [,] B ) ) Cn J ) ) |
| 56 | 51 15 29 | cnmptc | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( y e. ( A [,] B ) |-> A ) e. ( ( J |`t ( A [,] B ) ) Cn J ) ) |
| 57 | 51 55 56 26 | cnmpt12f | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( y e. ( A [,] B ) |-> ( y - A ) ) e. ( ( J |`t ( A [,] B ) ) Cn J ) ) |
| 58 | difrp | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( B - A ) e. RR+ ) ) |
|
| 59 | 58 | biimp3a | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( B - A ) e. RR+ ) |
| 60 | rpcnne0 | |- ( ( B - A ) e. RR+ -> ( ( B - A ) e. CC /\ ( B - A ) =/= 0 ) ) |
|
| 61 | 1 | divccn | |- ( ( ( B - A ) e. CC /\ ( B - A ) =/= 0 ) -> ( x e. CC |-> ( x / ( B - A ) ) ) e. ( J Cn J ) ) |
| 62 | 59 60 61 | 3syl | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. CC |-> ( x / ( B - A ) ) ) e. ( J Cn J ) ) |
| 63 | oveq1 | |- ( x = ( y - A ) -> ( x / ( B - A ) ) = ( ( y - A ) / ( B - A ) ) ) |
|
| 64 | 51 57 15 62 63 | cnmpt11 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( y e. ( A [,] B ) |-> ( ( y - A ) / ( B - A ) ) ) e. ( ( J |`t ( A [,] B ) ) Cn J ) ) |
| 65 | 49 64 | eqeltrd | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> `' F e. ( ( J |`t ( A [,] B ) ) Cn J ) ) |
| 66 | dfdm4 | |- dom F = ran `' F |
|
| 67 | 66 | eqimss2i | |- ran `' F C_ dom F |
| 68 | f1odm | |- ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) -> dom F = ( 0 [,] 1 ) ) |
|
| 69 | 38 68 | syl | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> dom F = ( 0 [,] 1 ) ) |
| 70 | 67 69 | sseqtrid | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ran `' F C_ ( 0 [,] 1 ) ) |
| 71 | unitsscn | |- ( 0 [,] 1 ) C_ CC |
|
| 72 | 71 | a1i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( 0 [,] 1 ) C_ CC ) |
| 73 | cnrest2 | |- ( ( J e. ( TopOn ` CC ) /\ ran `' F C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ CC ) -> ( `' F e. ( ( J |`t ( A [,] B ) ) Cn J ) <-> `' F e. ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( 0 [,] 1 ) ) ) ) ) |
|
| 74 | 14 70 72 73 | mp3an2i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( `' F e. ( ( J |`t ( A [,] B ) ) Cn J ) <-> `' F e. ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( 0 [,] 1 ) ) ) ) ) |
| 75 | 65 74 | mpbid | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> `' F e. ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( 0 [,] 1 ) ) ) ) |
| 76 | 5 | oveq2i | |- ( ( J |`t ( A [,] B ) ) Cn II ) = ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( 0 [,] 1 ) ) ) |
| 77 | 75 76 | eleqtrrdi | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> `' F e. ( ( J |`t ( A [,] B ) ) Cn II ) ) |
| 78 | ishmeo | |- ( F e. ( II Homeo ( J |`t ( A [,] B ) ) ) <-> ( F e. ( II Cn ( J |`t ( A [,] B ) ) ) /\ `' F e. ( ( J |`t ( A [,] B ) ) Cn II ) ) ) |
|
| 79 | 48 77 78 | sylanbrc | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> F e. ( II Homeo ( J |`t ( A [,] B ) ) ) ) |