This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for icccmp . (Contributed by Mario Carneiro, 13-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icccmp.1 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| icccmp.2 | ⊢ 𝑇 = ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) | ||
| icccmp.3 | ⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | ||
| icccmp.4 | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } | ||
| icccmp.5 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| icccmp.6 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| icccmp.7 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| icccmp.8 | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | ||
| icccmp.9 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) | ||
| icccmp.10 | ⊢ ( 𝜑 → 𝑉 ∈ 𝑈 ) | ||
| icccmp.11 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| icccmp.12 | ⊢ ( 𝜑 → ( 𝐺 ( ball ‘ 𝐷 ) 𝐶 ) ⊆ 𝑉 ) | ||
| icccmp.13 | ⊢ 𝐺 = sup ( 𝑆 , ℝ , < ) | ||
| icccmp.14 | ⊢ 𝑅 = if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) | ||
| Assertion | icccmplem2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icccmp.1 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| 2 | icccmp.2 | ⊢ 𝑇 = ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) | |
| 3 | icccmp.3 | ⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 4 | icccmp.4 | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } | |
| 5 | icccmp.5 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 6 | icccmp.6 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 7 | icccmp.7 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 8 | icccmp.8 | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | |
| 9 | icccmp.9 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) | |
| 10 | icccmp.10 | ⊢ ( 𝜑 → 𝑉 ∈ 𝑈 ) | |
| 11 | icccmp.11 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 12 | icccmp.12 | ⊢ ( 𝜑 → ( 𝐺 ( ball ‘ 𝐷 ) 𝐶 ) ⊆ 𝑉 ) | |
| 13 | icccmp.13 | ⊢ 𝐺 = sup ( 𝑆 , ℝ , < ) | |
| 14 | icccmp.14 | ⊢ 𝑅 = if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) | |
| 15 | 4 | ssrab3 | ⊢ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) |
| 16 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 17 | 5 6 16 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 18 | 15 17 | sstrid | ⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
| 19 | 1 2 3 4 5 6 7 8 9 | icccmplem1 | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) ) |
| 20 | 19 | simpld | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
| 21 | 20 | ne0d | ⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
| 22 | 19 | simprd | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) |
| 23 | brralrspcev | ⊢ ( ( 𝐵 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) → ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑛 ) | |
| 24 | 6 22 23 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑛 ) |
| 25 | 18 21 24 | suprcld | ⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ∈ ℝ ) |
| 26 | 13 25 | eqeltrid | ⊢ ( 𝜑 → 𝐺 ∈ ℝ ) |
| 27 | 11 | rphalfcld | ⊢ ( 𝜑 → ( 𝐶 / 2 ) ∈ ℝ+ ) |
| 28 | 26 27 | ltaddrpd | ⊢ ( 𝜑 → 𝐺 < ( 𝐺 + ( 𝐶 / 2 ) ) ) |
| 29 | 27 | rpred | ⊢ ( 𝜑 → ( 𝐶 / 2 ) ∈ ℝ ) |
| 30 | 26 29 | readdcld | ⊢ ( 𝜑 → ( 𝐺 + ( 𝐶 / 2 ) ) ∈ ℝ ) |
| 31 | 26 30 | ltnled | ⊢ ( 𝜑 → ( 𝐺 < ( 𝐺 + ( 𝐶 / 2 ) ) ↔ ¬ ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐺 ) ) |
| 32 | 28 31 | mpbid | ⊢ ( 𝜑 → ¬ ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐺 ) |
| 33 | 30 6 | ifcld | ⊢ ( 𝜑 → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ∈ ℝ ) |
| 34 | 14 33 | eqeltrid | ⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 35 | 18 21 24 20 | suprubd | ⊢ ( 𝜑 → 𝐴 ≤ sup ( 𝑆 , ℝ , < ) ) |
| 36 | 35 13 | breqtrrdi | ⊢ ( 𝜑 → 𝐴 ≤ 𝐺 ) |
| 37 | 26 30 28 | ltled | ⊢ ( 𝜑 → 𝐺 ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ) |
| 38 | 5 26 30 36 37 | letrd | ⊢ ( 𝜑 → 𝐴 ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ) |
| 39 | breq2 | ⊢ ( ( 𝐺 + ( 𝐶 / 2 ) ) = if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) → ( 𝐴 ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ↔ 𝐴 ≤ if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ) ) | |
| 40 | breq2 | ⊢ ( 𝐵 = if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) → ( 𝐴 ≤ 𝐵 ↔ 𝐴 ≤ if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ) ) | |
| 41 | 39 40 | ifboth | ⊢ ( ( 𝐴 ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ) |
| 42 | 38 7 41 | syl2anc | ⊢ ( 𝜑 → 𝐴 ≤ if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ) |
| 43 | 42 14 | breqtrrdi | ⊢ ( 𝜑 → 𝐴 ≤ 𝑅 ) |
| 44 | min2 | ⊢ ( ( ( 𝐺 + ( 𝐶 / 2 ) ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ≤ 𝐵 ) | |
| 45 | 30 6 44 | syl2anc | ⊢ ( 𝜑 → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ≤ 𝐵 ) |
| 46 | 14 45 | eqbrtrid | ⊢ ( 𝜑 → 𝑅 ≤ 𝐵 ) |
| 47 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑅 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑅 ∈ ℝ ∧ 𝐴 ≤ 𝑅 ∧ 𝑅 ≤ 𝐵 ) ) ) | |
| 48 | 5 6 47 | syl2anc | ⊢ ( 𝜑 → ( 𝑅 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑅 ∈ ℝ ∧ 𝐴 ≤ 𝑅 ∧ 𝑅 ≤ 𝐵 ) ) ) |
| 49 | 34 43 46 48 | mpbir3and | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 50 | 26 11 | ltsubrpd | ⊢ ( 𝜑 → ( 𝐺 − 𝐶 ) < 𝐺 ) |
| 51 | 50 13 | breqtrdi | ⊢ ( 𝜑 → ( 𝐺 − 𝐶 ) < sup ( 𝑆 , ℝ , < ) ) |
| 52 | 11 | rpred | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 53 | 26 52 | resubcld | ⊢ ( 𝜑 → ( 𝐺 − 𝐶 ) ∈ ℝ ) |
| 54 | suprlub | ⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑛 ) ∧ ( 𝐺 − 𝐶 ) ∈ ℝ ) → ( ( 𝐺 − 𝐶 ) < sup ( 𝑆 , ℝ , < ) ↔ ∃ 𝑣 ∈ 𝑆 ( 𝐺 − 𝐶 ) < 𝑣 ) ) | |
| 55 | 18 21 24 53 54 | syl31anc | ⊢ ( 𝜑 → ( ( 𝐺 − 𝐶 ) < sup ( 𝑆 , ℝ , < ) ↔ ∃ 𝑣 ∈ 𝑆 ( 𝐺 − 𝐶 ) < 𝑣 ) ) |
| 56 | 51 55 | mpbid | ⊢ ( 𝜑 → ∃ 𝑣 ∈ 𝑆 ( 𝐺 − 𝐶 ) < 𝑣 ) |
| 57 | oveq2 | ⊢ ( 𝑥 = 𝑣 → ( 𝐴 [,] 𝑥 ) = ( 𝐴 [,] 𝑣 ) ) | |
| 58 | 57 | sseq1d | ⊢ ( 𝑥 = 𝑣 → ( ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 ↔ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ) ) |
| 59 | 58 | rexbidv | ⊢ ( 𝑥 = 𝑣 → ( ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ) ) |
| 60 | 59 4 | elrab2 | ⊢ ( 𝑣 ∈ 𝑆 ↔ ( 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ∧ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ) ) |
| 61 | unieq | ⊢ ( 𝑧 = 𝑤 → ∪ 𝑧 = ∪ 𝑤 ) | |
| 62 | 61 | sseq2d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ↔ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ) ) |
| 63 | 62 | cbvrexvw | ⊢ ( ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ↔ ∃ 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ) |
| 64 | simpr1 | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ) | |
| 65 | elin | ⊢ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ↔ ( 𝑤 ∈ 𝒫 𝑈 ∧ 𝑤 ∈ Fin ) ) | |
| 66 | 64 65 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑤 ∈ 𝒫 𝑈 ∧ 𝑤 ∈ Fin ) ) |
| 67 | 66 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑤 ∈ 𝒫 𝑈 ) |
| 68 | 67 | elpwid | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑤 ⊆ 𝑈 ) |
| 69 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝜑 ) | |
| 70 | 69 10 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑉 ∈ 𝑈 ) |
| 71 | 70 | snssd | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → { 𝑉 } ⊆ 𝑈 ) |
| 72 | 68 71 | unssd | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑤 ∪ { 𝑉 } ) ⊆ 𝑈 ) |
| 73 | vex | ⊢ 𝑤 ∈ V | |
| 74 | snex | ⊢ { 𝑉 } ∈ V | |
| 75 | 73 74 | unex | ⊢ ( 𝑤 ∪ { 𝑉 } ) ∈ V |
| 76 | 75 | elpw | ⊢ ( ( 𝑤 ∪ { 𝑉 } ) ∈ 𝒫 𝑈 ↔ ( 𝑤 ∪ { 𝑉 } ) ⊆ 𝑈 ) |
| 77 | 72 76 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑤 ∪ { 𝑉 } ) ∈ 𝒫 𝑈 ) |
| 78 | 66 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑤 ∈ Fin ) |
| 79 | snfi | ⊢ { 𝑉 } ∈ Fin | |
| 80 | unfi | ⊢ ( ( 𝑤 ∈ Fin ∧ { 𝑉 } ∈ Fin ) → ( 𝑤 ∪ { 𝑉 } ) ∈ Fin ) | |
| 81 | 78 79 80 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑤 ∪ { 𝑉 } ) ∈ Fin ) |
| 82 | 77 81 | elind | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑤 ∪ { 𝑉 } ) ∈ ( 𝒫 𝑈 ∩ Fin ) ) |
| 83 | simplr2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ) | |
| 84 | ssun1 | ⊢ ∪ 𝑤 ⊆ ( ∪ 𝑤 ∪ 𝑉 ) | |
| 85 | 83 84 | sstrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → ( 𝐴 [,] 𝑣 ) ⊆ ( ∪ 𝑤 ∪ 𝑉 ) ) |
| 86 | 69 5 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝐴 ∈ ℝ ) |
| 87 | 69 34 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑅 ∈ ℝ ) |
| 88 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅 ) ) ) | |
| 89 | 86 87 88 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅 ) ) ) |
| 90 | 89 | biimpa | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅 ) ) |
| 91 | 90 | simp1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → 𝑡 ∈ ℝ ) |
| 92 | 91 | adantrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → 𝑡 ∈ ℝ ) |
| 93 | 90 | simp2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → 𝐴 ≤ 𝑡 ) |
| 94 | 93 | adantrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → 𝐴 ≤ 𝑡 ) |
| 95 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → 𝑡 ≤ 𝑣 ) | |
| 96 | 69 17 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 97 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 98 | 96 97 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑣 ∈ ℝ ) |
| 99 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑡 ∈ ( 𝐴 [,] 𝑣 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑣 ) ) ) | |
| 100 | 86 98 99 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑡 ∈ ( 𝐴 [,] 𝑣 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑣 ) ) ) |
| 101 | 100 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → ( 𝑡 ∈ ( 𝐴 [,] 𝑣 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑣 ) ) ) |
| 102 | 92 94 95 101 | mpbir3and | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → 𝑡 ∈ ( 𝐴 [,] 𝑣 ) ) |
| 103 | 85 102 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) |
| 104 | 103 | expr | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → ( 𝑡 ≤ 𝑣 → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) ) |
| 105 | 69 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝜑 ) |
| 106 | 105 12 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝐺 ( ball ‘ 𝐷 ) 𝐶 ) ⊆ 𝑉 ) |
| 107 | 91 | adantrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 ∈ ℝ ) |
| 108 | 105 53 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝐺 − 𝐶 ) ∈ ℝ ) |
| 109 | 98 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑣 ∈ ℝ ) |
| 110 | simplr3 | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝐺 − 𝐶 ) < 𝑣 ) | |
| 111 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑣 < 𝑡 ) | |
| 112 | 108 109 107 110 111 | lttrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝐺 − 𝐶 ) < 𝑡 ) |
| 113 | 105 34 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑅 ∈ ℝ ) |
| 114 | 26 52 | readdcld | ⊢ ( 𝜑 → ( 𝐺 + 𝐶 ) ∈ ℝ ) |
| 115 | 105 114 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝐺 + 𝐶 ) ∈ ℝ ) |
| 116 | 90 | simp3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → 𝑡 ≤ 𝑅 ) |
| 117 | 116 | adantrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 ≤ 𝑅 ) |
| 118 | min1 | ⊢ ( ( ( 𝐺 + ( 𝐶 / 2 ) ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ) | |
| 119 | 30 6 118 | syl2anc | ⊢ ( 𝜑 → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ) |
| 120 | 14 119 | eqbrtrid | ⊢ ( 𝜑 → 𝑅 ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ) |
| 121 | rphalflt | ⊢ ( 𝐶 ∈ ℝ+ → ( 𝐶 / 2 ) < 𝐶 ) | |
| 122 | 11 121 | syl | ⊢ ( 𝜑 → ( 𝐶 / 2 ) < 𝐶 ) |
| 123 | 29 52 26 122 | ltadd2dd | ⊢ ( 𝜑 → ( 𝐺 + ( 𝐶 / 2 ) ) < ( 𝐺 + 𝐶 ) ) |
| 124 | 34 30 114 120 123 | lelttrd | ⊢ ( 𝜑 → 𝑅 < ( 𝐺 + 𝐶 ) ) |
| 125 | 105 124 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑅 < ( 𝐺 + 𝐶 ) ) |
| 126 | 107 113 115 117 125 | lelttrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 < ( 𝐺 + 𝐶 ) ) |
| 127 | rexr | ⊢ ( ( 𝐺 − 𝐶 ) ∈ ℝ → ( 𝐺 − 𝐶 ) ∈ ℝ* ) | |
| 128 | rexr | ⊢ ( ( 𝐺 + 𝐶 ) ∈ ℝ → ( 𝐺 + 𝐶 ) ∈ ℝ* ) | |
| 129 | elioo2 | ⊢ ( ( ( 𝐺 − 𝐶 ) ∈ ℝ* ∧ ( 𝐺 + 𝐶 ) ∈ ℝ* ) → ( 𝑡 ∈ ( ( 𝐺 − 𝐶 ) (,) ( 𝐺 + 𝐶 ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( 𝐺 − 𝐶 ) < 𝑡 ∧ 𝑡 < ( 𝐺 + 𝐶 ) ) ) ) | |
| 130 | 127 128 129 | syl2an | ⊢ ( ( ( 𝐺 − 𝐶 ) ∈ ℝ ∧ ( 𝐺 + 𝐶 ) ∈ ℝ ) → ( 𝑡 ∈ ( ( 𝐺 − 𝐶 ) (,) ( 𝐺 + 𝐶 ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( 𝐺 − 𝐶 ) < 𝑡 ∧ 𝑡 < ( 𝐺 + 𝐶 ) ) ) ) |
| 131 | 108 115 130 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝑡 ∈ ( ( 𝐺 − 𝐶 ) (,) ( 𝐺 + 𝐶 ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( 𝐺 − 𝐶 ) < 𝑡 ∧ 𝑡 < ( 𝐺 + 𝐶 ) ) ) ) |
| 132 | 107 112 126 131 | mpbir3and | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 ∈ ( ( 𝐺 − 𝐶 ) (,) ( 𝐺 + 𝐶 ) ) ) |
| 133 | 105 26 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝐺 ∈ ℝ ) |
| 134 | 105 11 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝐶 ∈ ℝ+ ) |
| 135 | 134 | rpred | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝐶 ∈ ℝ ) |
| 136 | 3 | bl2ioo | ⊢ ( ( 𝐺 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐺 ( ball ‘ 𝐷 ) 𝐶 ) = ( ( 𝐺 − 𝐶 ) (,) ( 𝐺 + 𝐶 ) ) ) |
| 137 | 133 135 136 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝐺 ( ball ‘ 𝐷 ) 𝐶 ) = ( ( 𝐺 − 𝐶 ) (,) ( 𝐺 + 𝐶 ) ) ) |
| 138 | 132 137 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 ∈ ( 𝐺 ( ball ‘ 𝐷 ) 𝐶 ) ) |
| 139 | 106 138 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 ∈ 𝑉 ) |
| 140 | elun2 | ⊢ ( 𝑡 ∈ 𝑉 → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) | |
| 141 | 139 140 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) |
| 142 | 141 | expr | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → ( 𝑣 < 𝑡 → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) ) |
| 143 | 98 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → 𝑣 ∈ ℝ ) |
| 144 | lelttric | ⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑡 ≤ 𝑣 ∨ 𝑣 < 𝑡 ) ) | |
| 145 | 91 143 144 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → ( 𝑡 ≤ 𝑣 ∨ 𝑣 < 𝑡 ) ) |
| 146 | 104 142 145 | mpjaod | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) |
| 147 | 146 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) ) |
| 148 | 147 | ssrdv | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝐴 [,] 𝑅 ) ⊆ ( ∪ 𝑤 ∪ 𝑉 ) ) |
| 149 | uniun | ⊢ ∪ ( 𝑤 ∪ { 𝑉 } ) = ( ∪ 𝑤 ∪ ∪ { 𝑉 } ) | |
| 150 | unisng | ⊢ ( 𝑉 ∈ 𝑈 → ∪ { 𝑉 } = 𝑉 ) | |
| 151 | 70 150 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ∪ { 𝑉 } = 𝑉 ) |
| 152 | 151 | uneq2d | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( ∪ 𝑤 ∪ ∪ { 𝑉 } ) = ( ∪ 𝑤 ∪ 𝑉 ) ) |
| 153 | 149 152 | eqtrid | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ∪ ( 𝑤 ∪ { 𝑉 } ) = ( ∪ 𝑤 ∪ 𝑉 ) ) |
| 154 | 148 153 | sseqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝐴 [,] 𝑅 ) ⊆ ∪ ( 𝑤 ∪ { 𝑉 } ) ) |
| 155 | unieq | ⊢ ( 𝑦 = ( 𝑤 ∪ { 𝑉 } ) → ∪ 𝑦 = ∪ ( 𝑤 ∪ { 𝑉 } ) ) | |
| 156 | 155 | sseq2d | ⊢ ( 𝑦 = ( 𝑤 ∪ { 𝑉 } ) → ( ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ↔ ( 𝐴 [,] 𝑅 ) ⊆ ∪ ( 𝑤 ∪ { 𝑉 } ) ) ) |
| 157 | 156 | rspcev | ⊢ ( ( ( 𝑤 ∪ { 𝑉 } ) ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑅 ) ⊆ ∪ ( 𝑤 ∪ { 𝑉 } ) ) → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) |
| 158 | 82 154 157 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) |
| 159 | 158 | 3exp2 | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) → ( ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 → ( ( 𝐺 − 𝐶 ) < 𝑣 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) ) ) |
| 160 | 159 | rexlimdv | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∃ 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 → ( ( 𝐺 − 𝐶 ) < 𝑣 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) ) |
| 161 | 63 160 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 → ( ( 𝐺 − 𝐶 ) < 𝑣 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) ) |
| 162 | 161 | expimpd | ⊢ ( 𝜑 → ( ( 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ∧ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ) → ( ( 𝐺 − 𝐶 ) < 𝑣 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) ) |
| 163 | 60 162 | biimtrid | ⊢ ( 𝜑 → ( 𝑣 ∈ 𝑆 → ( ( 𝐺 − 𝐶 ) < 𝑣 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) ) |
| 164 | 163 | rexlimdv | ⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝑆 ( 𝐺 − 𝐶 ) < 𝑣 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) |
| 165 | 56 164 | mpd | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) |
| 166 | oveq2 | ⊢ ( 𝑣 = 𝑅 → ( 𝐴 [,] 𝑣 ) = ( 𝐴 [,] 𝑅 ) ) | |
| 167 | 166 | sseq1d | ⊢ ( 𝑣 = 𝑅 → ( ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 ↔ ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) |
| 168 | 167 | rexbidv | ⊢ ( 𝑣 = 𝑅 → ( ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 ↔ ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) |
| 169 | unieq | ⊢ ( 𝑧 = 𝑦 → ∪ 𝑧 = ∪ 𝑦 ) | |
| 170 | 169 | sseq2d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ↔ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 ) ) |
| 171 | 170 | cbvrexvw | ⊢ ( ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ↔ ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 ) |
| 172 | 59 171 | bitrdi | ⊢ ( 𝑥 = 𝑣 → ( ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 ↔ ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 ) ) |
| 173 | 172 | cbvrabv | ⊢ { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } = { 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 } |
| 174 | 4 173 | eqtri | ⊢ 𝑆 = { 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 } |
| 175 | 168 174 | elrab2 | ⊢ ( 𝑅 ∈ 𝑆 ↔ ( 𝑅 ∈ ( 𝐴 [,] 𝐵 ) ∧ ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) |
| 176 | 49 165 175 | sylanbrc | ⊢ ( 𝜑 → 𝑅 ∈ 𝑆 ) |
| 177 | 18 21 24 176 | suprubd | ⊢ ( 𝜑 → 𝑅 ≤ sup ( 𝑆 , ℝ , < ) ) |
| 178 | 177 13 | breqtrrdi | ⊢ ( 𝜑 → 𝑅 ≤ 𝐺 ) |
| 179 | iftrue | ⊢ ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) = ( 𝐺 + ( 𝐶 / 2 ) ) ) | |
| 180 | 14 179 | eqtrid | ⊢ ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 → 𝑅 = ( 𝐺 + ( 𝐶 / 2 ) ) ) |
| 181 | 180 | breq1d | ⊢ ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 → ( 𝑅 ≤ 𝐺 ↔ ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐺 ) ) |
| 182 | 178 181 | syl5ibcom | ⊢ ( 𝜑 → ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 → ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐺 ) ) |
| 183 | 32 182 | mtod | ⊢ ( 𝜑 → ¬ ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 ) |
| 184 | iffalse | ⊢ ( ¬ ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) = 𝐵 ) | |
| 185 | 14 184 | eqtrid | ⊢ ( ¬ ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 → 𝑅 = 𝐵 ) |
| 186 | 183 185 | syl | ⊢ ( 𝜑 → 𝑅 = 𝐵 ) |
| 187 | 186 176 | eqeltrrd | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |