This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for icccmp . (Contributed by Mario Carneiro, 13-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icccmp.1 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| icccmp.2 | ⊢ 𝑇 = ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) | ||
| icccmp.3 | ⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | ||
| icccmp.4 | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } | ||
| icccmp.5 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| icccmp.6 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| icccmp.7 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| icccmp.8 | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | ||
| icccmp.9 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) | ||
| Assertion | icccmplem3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icccmp.1 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| 2 | icccmp.2 | ⊢ 𝑇 = ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) | |
| 3 | icccmp.3 | ⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 4 | icccmp.4 | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } | |
| 5 | icccmp.5 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 6 | icccmp.6 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 7 | icccmp.7 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 8 | icccmp.8 | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | |
| 9 | icccmp.9 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) | |
| 10 | 4 | ssrab3 | ⊢ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) |
| 11 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 12 | 5 6 11 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 13 | 10 12 | sstrid | ⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
| 14 | 1 2 3 4 5 6 7 8 9 | icccmplem1 | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) ) |
| 15 | 14 | simpld | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
| 16 | 15 | ne0d | ⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
| 17 | 14 | simprd | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) |
| 18 | brralrspcev | ⊢ ( ( 𝐵 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) → ∃ 𝑣 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑣 ) | |
| 19 | 6 17 18 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑣 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑣 ) |
| 20 | 13 16 19 | suprcld | ⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ∈ ℝ ) |
| 21 | 13 16 19 15 | suprubd | ⊢ ( 𝜑 → 𝐴 ≤ sup ( 𝑆 , ℝ , < ) ) |
| 22 | suprleub | ⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑣 ) ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) ) | |
| 23 | 13 16 19 6 22 | syl31anc | ⊢ ( 𝜑 → ( sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) ) |
| 24 | 17 23 | mpbird | ⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ) |
| 25 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝑆 , ℝ , < ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( sup ( 𝑆 , ℝ , < ) ∈ ℝ ∧ 𝐴 ≤ sup ( 𝑆 , ℝ , < ) ∧ sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ) ) ) | |
| 26 | 5 6 25 | syl2anc | ⊢ ( 𝜑 → ( sup ( 𝑆 , ℝ , < ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( sup ( 𝑆 , ℝ , < ) ∈ ℝ ∧ 𝐴 ≤ sup ( 𝑆 , ℝ , < ) ∧ sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ) ) ) |
| 27 | 20 21 24 26 | mpbir3and | ⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 28 | 9 27 | sseldd | ⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ∈ ∪ 𝑈 ) |
| 29 | eluni2 | ⊢ ( sup ( 𝑆 , ℝ , < ) ∈ ∪ 𝑈 ↔ ∃ 𝑢 ∈ 𝑈 sup ( 𝑆 , ℝ , < ) ∈ 𝑢 ) | |
| 30 | 28 29 | sylib | ⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝑈 sup ( 𝑆 , ℝ , < ) ∈ 𝑢 ) |
| 31 | 8 | sselda | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ∈ 𝐽 ) |
| 32 | 3 | rexmet | ⊢ 𝐷 ∈ ( ∞Met ‘ ℝ ) |
| 33 | eqid | ⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) | |
| 34 | 3 33 | tgioo | ⊢ ( topGen ‘ ran (,) ) = ( MetOpen ‘ 𝐷 ) |
| 35 | 1 34 | eqtri | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 36 | 35 | mopni2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℝ ) ∧ 𝑢 ∈ 𝐽 ∧ sup ( 𝑆 , ℝ , < ) ∈ 𝑢 ) → ∃ 𝑤 ∈ ℝ+ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) |
| 37 | 32 36 | mp3an1 | ⊢ ( ( 𝑢 ∈ 𝐽 ∧ sup ( 𝑆 , ℝ , < ) ∈ 𝑢 ) → ∃ 𝑤 ∈ ℝ+ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) |
| 38 | 37 | ex | ⊢ ( 𝑢 ∈ 𝐽 → ( sup ( 𝑆 , ℝ , < ) ∈ 𝑢 → ∃ 𝑤 ∈ ℝ+ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) |
| 39 | 31 38 | syl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( sup ( 𝑆 , ℝ , < ) ∈ 𝑢 → ∃ 𝑤 ∈ ℝ+ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) |
| 40 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) → 𝐴 ∈ ℝ ) |
| 41 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) → 𝐵 ∈ ℝ ) |
| 42 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) → 𝐴 ≤ 𝐵 ) |
| 43 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) → 𝑈 ⊆ 𝐽 ) |
| 44 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) |
| 45 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) → 𝑢 ∈ 𝑈 ) | |
| 46 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) → 𝑤 ∈ ℝ+ ) | |
| 47 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) → ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) | |
| 48 | eqid | ⊢ sup ( 𝑆 , ℝ , < ) = sup ( 𝑆 , ℝ , < ) | |
| 49 | eqid | ⊢ if ( ( sup ( 𝑆 , ℝ , < ) + ( 𝑤 / 2 ) ) ≤ 𝐵 , ( sup ( 𝑆 , ℝ , < ) + ( 𝑤 / 2 ) ) , 𝐵 ) = if ( ( sup ( 𝑆 , ℝ , < ) + ( 𝑤 / 2 ) ) ≤ 𝐵 , ( sup ( 𝑆 , ℝ , < ) + ( 𝑤 / 2 ) ) , 𝐵 ) | |
| 50 | 1 2 3 4 40 41 42 43 44 45 46 47 48 49 | icccmplem2 | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) → 𝐵 ∈ 𝑆 ) |
| 51 | 50 | rexlimdvaa | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ∃ 𝑤 ∈ ℝ+ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 → 𝐵 ∈ 𝑆 ) ) |
| 52 | 39 51 | syld | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( sup ( 𝑆 , ℝ , < ) ∈ 𝑢 → 𝐵 ∈ 𝑆 ) ) |
| 53 | 52 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑢 ∈ 𝑈 sup ( 𝑆 , ℝ , < ) ∈ 𝑢 → 𝐵 ∈ 𝑆 ) ) |
| 54 | 30 53 | mpd | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |