This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Mario Carneiro, 24-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | max0add | ⊢ ( 𝐴 ∈ ℝ → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) + if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = ( abs ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | ⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) | |
| 2 | id | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) | |
| 3 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℂ ) |
| 5 | 4 | addridd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 + 0 ) = 𝐴 ) |
| 6 | iftrue | ⊢ ( 0 ≤ 𝐴 → if ( 0 ≤ 𝐴 , 𝐴 , 0 ) = 𝐴 ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → if ( 0 ≤ 𝐴 , 𝐴 , 0 ) = 𝐴 ) |
| 8 | le0neg2 | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ - 𝐴 ≤ 0 ) ) | |
| 9 | 8 | biimpa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → - 𝐴 ≤ 0 ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ - 𝐴 ) → - 𝐴 ≤ 0 ) |
| 11 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ - 𝐴 ) → 0 ≤ - 𝐴 ) | |
| 12 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ - 𝐴 ) → - 𝐴 ∈ ℝ ) |
| 14 | 0re | ⊢ 0 ∈ ℝ | |
| 15 | letri3 | ⊢ ( ( - 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( - 𝐴 = 0 ↔ ( - 𝐴 ≤ 0 ∧ 0 ≤ - 𝐴 ) ) ) | |
| 16 | 13 14 15 | sylancl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ - 𝐴 ) → ( - 𝐴 = 0 ↔ ( - 𝐴 ≤ 0 ∧ 0 ≤ - 𝐴 ) ) ) |
| 17 | 10 11 16 | mpbir2and | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ - 𝐴 ) → - 𝐴 = 0 ) |
| 18 | 17 | ifeq1da | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) = if ( 0 ≤ - 𝐴 , 0 , 0 ) ) |
| 19 | ifid | ⊢ if ( 0 ≤ - 𝐴 , 0 , 0 ) = 0 | |
| 20 | 18 19 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) = 0 ) |
| 21 | 7 20 | oveq12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) + if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = ( 𝐴 + 0 ) ) |
| 22 | absid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 ) | |
| 23 | 5 21 22 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) + if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = ( abs ‘ 𝐴 ) ) |
| 24 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → 𝐴 ∈ ℂ ) |
| 25 | 24 | negcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → - 𝐴 ∈ ℂ ) |
| 26 | 25 | addlidd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( 0 + - 𝐴 ) = - 𝐴 ) |
| 27 | letri3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 = 0 ↔ ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) ) ) | |
| 28 | 14 27 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 = 0 ↔ ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) ) ) |
| 29 | 28 | biimprd | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) → 𝐴 = 0 ) ) |
| 30 | 29 | impl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) ∧ 0 ≤ 𝐴 ) → 𝐴 = 0 ) |
| 31 | 30 | ifeq1da | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → if ( 0 ≤ 𝐴 , 𝐴 , 0 ) = if ( 0 ≤ 𝐴 , 0 , 0 ) ) |
| 32 | ifid | ⊢ if ( 0 ≤ 𝐴 , 0 , 0 ) = 0 | |
| 33 | 31 32 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → if ( 0 ≤ 𝐴 , 𝐴 , 0 ) = 0 ) |
| 34 | le0neg1 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 ↔ 0 ≤ - 𝐴 ) ) | |
| 35 | 34 | biimpa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → 0 ≤ - 𝐴 ) |
| 36 | 35 | iftrued | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) = - 𝐴 ) |
| 37 | 33 36 | oveq12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) + if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = ( 0 + - 𝐴 ) ) |
| 38 | absnid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( abs ‘ 𝐴 ) = - 𝐴 ) | |
| 39 | 26 37 38 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) + if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = ( abs ‘ 𝐴 ) ) |
| 40 | 1 2 23 39 | lecasei | ⊢ ( 𝐴 ∈ ℝ → ( if ( 0 ≤ 𝐴 , 𝐴 , 0 ) + if ( 0 ≤ - 𝐴 , - 𝐴 , 0 ) ) = ( abs ‘ 𝐴 ) ) |