This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Normed complex vector space property of a subspace. (Contributed by NM, 26-Mar-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhssnvt.1 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| hhssnv.2 | ⊢ 𝐻 ∈ Sℋ | ||
| Assertion | hhssnv | ⊢ 𝑊 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhssnvt.1 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| 2 | hhssnv.2 | ⊢ 𝐻 ∈ Sℋ | |
| 3 | 2 | hhssabloi | ⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ AbelOp |
| 4 | ablogrpo | ⊢ ( ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ AbelOp → ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ GrpOp ) | |
| 5 | 3 4 | ax-mp | ⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ GrpOp |
| 6 | 2 | shssii | ⊢ 𝐻 ⊆ ℋ |
| 7 | xpss12 | ⊢ ( ( 𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ ) → ( 𝐻 × 𝐻 ) ⊆ ( ℋ × ℋ ) ) | |
| 8 | 6 6 7 | mp2an | ⊢ ( 𝐻 × 𝐻 ) ⊆ ( ℋ × ℋ ) |
| 9 | ax-hfvadd | ⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ | |
| 10 | 9 | fdmi | ⊢ dom +ℎ = ( ℋ × ℋ ) |
| 11 | 8 10 | sseqtrri | ⊢ ( 𝐻 × 𝐻 ) ⊆ dom +ℎ |
| 12 | ssdmres | ⊢ ( ( 𝐻 × 𝐻 ) ⊆ dom +ℎ ↔ dom ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) = ( 𝐻 × 𝐻 ) ) | |
| 13 | 11 12 | mpbi | ⊢ dom ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) = ( 𝐻 × 𝐻 ) |
| 14 | 5 13 | grporn | ⊢ 𝐻 = ran ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) |
| 15 | sh0 | ⊢ ( 𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻 ) | |
| 16 | 2 15 | ax-mp | ⊢ 0ℎ ∈ 𝐻 |
| 17 | ovres | ⊢ ( ( 0ℎ ∈ 𝐻 ∧ 0ℎ ∈ 𝐻 ) → ( 0ℎ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 0ℎ ) = ( 0ℎ +ℎ 0ℎ ) ) | |
| 18 | 16 16 17 | mp2an | ⊢ ( 0ℎ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 0ℎ ) = ( 0ℎ +ℎ 0ℎ ) |
| 19 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 20 | 19 | hvaddlidi | ⊢ ( 0ℎ +ℎ 0ℎ ) = 0ℎ |
| 21 | 18 20 | eqtri | ⊢ ( 0ℎ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 0ℎ ) = 0ℎ |
| 22 | eqid | ⊢ ( GId ‘ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ) = ( GId ‘ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ) | |
| 23 | 14 22 | grpoid | ⊢ ( ( ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ GrpOp ∧ 0ℎ ∈ 𝐻 ) → ( 0ℎ = ( GId ‘ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ) ↔ ( 0ℎ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 0ℎ ) = 0ℎ ) ) |
| 24 | 5 16 23 | mp2an | ⊢ ( 0ℎ = ( GId ‘ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ) ↔ ( 0ℎ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 0ℎ ) = 0ℎ ) |
| 25 | 21 24 | mpbir | ⊢ 0ℎ = ( GId ‘ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ) |
| 26 | ax-hfvmul | ⊢ ·ℎ : ( ℂ × ℋ ) ⟶ ℋ | |
| 27 | ffn | ⊢ ( ·ℎ : ( ℂ × ℋ ) ⟶ ℋ → ·ℎ Fn ( ℂ × ℋ ) ) | |
| 28 | 26 27 | ax-mp | ⊢ ·ℎ Fn ( ℂ × ℋ ) |
| 29 | ssid | ⊢ ℂ ⊆ ℂ | |
| 30 | xpss12 | ⊢ ( ( ℂ ⊆ ℂ ∧ 𝐻 ⊆ ℋ ) → ( ℂ × 𝐻 ) ⊆ ( ℂ × ℋ ) ) | |
| 31 | 29 6 30 | mp2an | ⊢ ( ℂ × 𝐻 ) ⊆ ( ℂ × ℋ ) |
| 32 | fnssres | ⊢ ( ( ·ℎ Fn ( ℂ × ℋ ) ∧ ( ℂ × 𝐻 ) ⊆ ( ℂ × ℋ ) ) → ( ·ℎ ↾ ( ℂ × 𝐻 ) ) Fn ( ℂ × 𝐻 ) ) | |
| 33 | 28 31 32 | mp2an | ⊢ ( ·ℎ ↾ ( ℂ × 𝐻 ) ) Fn ( ℂ × 𝐻 ) |
| 34 | ovelrn | ⊢ ( ( ·ℎ ↾ ( ℂ × 𝐻 ) ) Fn ( ℂ × 𝐻 ) → ( 𝑧 ∈ ran ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ↔ ∃ 𝑥 ∈ ℂ ∃ 𝑦 ∈ 𝐻 𝑧 = ( 𝑥 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑦 ) ) ) | |
| 35 | 33 34 | ax-mp | ⊢ ( 𝑧 ∈ ran ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ↔ ∃ 𝑥 ∈ ℂ ∃ 𝑦 ∈ 𝐻 𝑧 = ( 𝑥 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑦 ) ) |
| 36 | ovres | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑦 ) = ( 𝑥 ·ℎ 𝑦 ) ) | |
| 37 | shmulcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) | |
| 38 | 2 37 | mp3an1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) |
| 39 | 36 38 | eqeltrd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑦 ) ∈ 𝐻 ) |
| 40 | eleq1 | ⊢ ( 𝑧 = ( 𝑥 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑦 ) → ( 𝑧 ∈ 𝐻 ↔ ( 𝑥 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑦 ) ∈ 𝐻 ) ) | |
| 41 | 39 40 | syl5ibrcom | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻 ) → ( 𝑧 = ( 𝑥 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑦 ) → 𝑧 ∈ 𝐻 ) ) |
| 42 | 41 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ ℂ ∃ 𝑦 ∈ 𝐻 𝑧 = ( 𝑥 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑦 ) → 𝑧 ∈ 𝐻 ) |
| 43 | 35 42 | sylbi | ⊢ ( 𝑧 ∈ ran ( ·ℎ ↾ ( ℂ × 𝐻 ) ) → 𝑧 ∈ 𝐻 ) |
| 44 | 43 | ssriv | ⊢ ran ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ⊆ 𝐻 |
| 45 | df-f | ⊢ ( ( ·ℎ ↾ ( ℂ × 𝐻 ) ) : ( ℂ × 𝐻 ) ⟶ 𝐻 ↔ ( ( ·ℎ ↾ ( ℂ × 𝐻 ) ) Fn ( ℂ × 𝐻 ) ∧ ran ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ⊆ 𝐻 ) ) | |
| 46 | 33 44 45 | mpbir2an | ⊢ ( ·ℎ ↾ ( ℂ × 𝐻 ) ) : ( ℂ × 𝐻 ) ⟶ 𝐻 |
| 47 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 48 | ovres | ⊢ ( ( 1 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( 1 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) = ( 1 ·ℎ 𝑥 ) ) | |
| 49 | 47 48 | mpan | ⊢ ( 𝑥 ∈ 𝐻 → ( 1 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) = ( 1 ·ℎ 𝑥 ) ) |
| 50 | 2 | sheli | ⊢ ( 𝑥 ∈ 𝐻 → 𝑥 ∈ ℋ ) |
| 51 | ax-hvmulid | ⊢ ( 𝑥 ∈ ℋ → ( 1 ·ℎ 𝑥 ) = 𝑥 ) | |
| 52 | 50 51 | syl | ⊢ ( 𝑥 ∈ 𝐻 → ( 1 ·ℎ 𝑥 ) = 𝑥 ) |
| 53 | 49 52 | eqtrd | ⊢ ( 𝑥 ∈ 𝐻 → ( 1 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) = 𝑥 ) |
| 54 | id | ⊢ ( 𝑦 ∈ ℂ → 𝑦 ∈ ℂ ) | |
| 55 | 2 | sheli | ⊢ ( 𝑧 ∈ 𝐻 → 𝑧 ∈ ℋ ) |
| 56 | ax-hvdistr1 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 ·ℎ ( 𝑥 +ℎ 𝑧 ) ) = ( ( 𝑦 ·ℎ 𝑥 ) +ℎ ( 𝑦 ·ℎ 𝑧 ) ) ) | |
| 57 | 54 50 55 56 | syl3an | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑦 ·ℎ ( 𝑥 +ℎ 𝑧 ) ) = ( ( 𝑦 ·ℎ 𝑥 ) +ℎ ( 𝑦 ·ℎ 𝑧 ) ) ) |
| 58 | ovres | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) = ( 𝑥 +ℎ 𝑧 ) ) | |
| 59 | 58 | 3adant1 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) = ( 𝑥 +ℎ 𝑧 ) ) |
| 60 | 59 | oveq2d | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ( 𝑥 +ℎ 𝑧 ) ) ) |
| 61 | shaddcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝑥 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑥 +ℎ 𝑧 ) ∈ 𝐻 ) | |
| 62 | 2 61 | mp3an1 | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑥 +ℎ 𝑧 ) ∈ 𝐻 ) |
| 63 | ovres | ⊢ ( ( 𝑦 ∈ ℂ ∧ ( 𝑥 +ℎ 𝑧 ) ∈ 𝐻 ) → ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ( 𝑥 +ℎ 𝑧 ) ) = ( 𝑦 ·ℎ ( 𝑥 +ℎ 𝑧 ) ) ) | |
| 64 | 62 63 | sylan2 | ⊢ ( ( 𝑦 ∈ ℂ ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) → ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ( 𝑥 +ℎ 𝑧 ) ) = ( 𝑦 ·ℎ ( 𝑥 +ℎ 𝑧 ) ) ) |
| 65 | 64 | 3impb | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ( 𝑥 +ℎ 𝑧 ) ) = ( 𝑦 ·ℎ ( 𝑥 +ℎ 𝑧 ) ) ) |
| 66 | 60 65 | eqtrd | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( 𝑦 ·ℎ ( 𝑥 +ℎ 𝑧 ) ) ) |
| 67 | ovres | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) ) | |
| 68 | 67 | 3adant3 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) ) |
| 69 | ovres | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ 𝐻 ) → ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑧 ) = ( 𝑦 ·ℎ 𝑧 ) ) | |
| 70 | 69 | 3adant2 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑧 ) = ( 𝑦 ·ℎ 𝑧 ) ) |
| 71 | 68 70 | oveq12d | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑧 ) ) = ( ( 𝑦 ·ℎ 𝑥 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ·ℎ 𝑧 ) ) ) |
| 72 | shmulcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( 𝑦 ·ℎ 𝑥 ) ∈ 𝐻 ) | |
| 73 | 2 72 | mp3an1 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( 𝑦 ·ℎ 𝑥 ) ∈ 𝐻 ) |
| 74 | 73 | 3adant3 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑦 ·ℎ 𝑥 ) ∈ 𝐻 ) |
| 75 | shmulcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ 𝐻 ) → ( 𝑦 ·ℎ 𝑧 ) ∈ 𝐻 ) | |
| 76 | 2 75 | mp3an1 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ 𝐻 ) → ( 𝑦 ·ℎ 𝑧 ) ∈ 𝐻 ) |
| 77 | 76 | 3adant2 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑦 ·ℎ 𝑧 ) ∈ 𝐻 ) |
| 78 | 74 77 | ovresd | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( ( 𝑦 ·ℎ 𝑥 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ·ℎ 𝑧 ) ) = ( ( 𝑦 ·ℎ 𝑥 ) +ℎ ( 𝑦 ·ℎ 𝑧 ) ) ) |
| 79 | 71 78 | eqtrd | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑧 ) ) = ( ( 𝑦 ·ℎ 𝑥 ) +ℎ ( 𝑦 ·ℎ 𝑧 ) ) ) |
| 80 | 57 66 79 | 3eqtr4d | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑧 ) ) ) |
| 81 | ax-hvdistr2 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑦 + 𝑧 ) ·ℎ 𝑥 ) = ( ( 𝑦 ·ℎ 𝑥 ) +ℎ ( 𝑧 ·ℎ 𝑥 ) ) ) | |
| 82 | 50 81 | syl3an3 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( ( 𝑦 + 𝑧 ) ·ℎ 𝑥 ) = ( ( 𝑦 ·ℎ 𝑥 ) +ℎ ( 𝑧 ·ℎ 𝑥 ) ) ) |
| 83 | addcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑦 + 𝑧 ) ∈ ℂ ) | |
| 84 | ovres | ⊢ ( ( ( 𝑦 + 𝑧 ) ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( ( 𝑦 + 𝑧 ) ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) = ( ( 𝑦 + 𝑧 ) ·ℎ 𝑥 ) ) | |
| 85 | 83 84 | stoic3 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( ( 𝑦 + 𝑧 ) ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) = ( ( 𝑦 + 𝑧 ) ·ℎ 𝑥 ) ) |
| 86 | 67 | 3adant2 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) ) |
| 87 | ovres | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( 𝑧 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) = ( 𝑧 ·ℎ 𝑥 ) ) | |
| 88 | 87 | 3adant1 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( 𝑧 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) = ( 𝑧 ·ℎ 𝑥 ) ) |
| 89 | 86 88 | oveq12d | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑧 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) ) = ( ( 𝑦 ·ℎ 𝑥 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑧 ·ℎ 𝑥 ) ) ) |
| 90 | 73 | 3adant2 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( 𝑦 ·ℎ 𝑥 ) ∈ 𝐻 ) |
| 91 | shmulcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( 𝑧 ·ℎ 𝑥 ) ∈ 𝐻 ) | |
| 92 | 2 91 | mp3an1 | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( 𝑧 ·ℎ 𝑥 ) ∈ 𝐻 ) |
| 93 | 92 | 3adant1 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( 𝑧 ·ℎ 𝑥 ) ∈ 𝐻 ) |
| 94 | 90 93 | ovresd | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( ( 𝑦 ·ℎ 𝑥 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑧 ·ℎ 𝑥 ) ) = ( ( 𝑦 ·ℎ 𝑥 ) +ℎ ( 𝑧 ·ℎ 𝑥 ) ) ) |
| 95 | 89 94 | eqtrd | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑧 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) ) = ( ( 𝑦 ·ℎ 𝑥 ) +ℎ ( 𝑧 ·ℎ 𝑥 ) ) ) |
| 96 | 82 85 95 | 3eqtr4d | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( ( 𝑦 + 𝑧 ) ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) = ( ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑧 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) ) ) |
| 97 | ax-hvmulass | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑦 · 𝑧 ) ·ℎ 𝑥 ) = ( 𝑦 ·ℎ ( 𝑧 ·ℎ 𝑥 ) ) ) | |
| 98 | 50 97 | syl3an3 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( ( 𝑦 · 𝑧 ) ·ℎ 𝑥 ) = ( 𝑦 ·ℎ ( 𝑧 ·ℎ 𝑥 ) ) ) |
| 99 | mulcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑦 · 𝑧 ) ∈ ℂ ) | |
| 100 | ovres | ⊢ ( ( ( 𝑦 · 𝑧 ) ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( ( 𝑦 · 𝑧 ) ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) = ( ( 𝑦 · 𝑧 ) ·ℎ 𝑥 ) ) | |
| 101 | 99 100 | stoic3 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( ( 𝑦 · 𝑧 ) ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) = ( ( 𝑦 · 𝑧 ) ·ℎ 𝑥 ) ) |
| 102 | 88 | oveq2d | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ( 𝑧 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) ) = ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ( 𝑧 ·ℎ 𝑥 ) ) ) |
| 103 | ovres | ⊢ ( ( 𝑦 ∈ ℂ ∧ ( 𝑧 ·ℎ 𝑥 ) ∈ 𝐻 ) → ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ( 𝑧 ·ℎ 𝑥 ) ) = ( 𝑦 ·ℎ ( 𝑧 ·ℎ 𝑥 ) ) ) | |
| 104 | 92 103 | sylan2 | ⊢ ( ( 𝑦 ∈ ℂ ∧ ( 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) ) → ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ( 𝑧 ·ℎ 𝑥 ) ) = ( 𝑦 ·ℎ ( 𝑧 ·ℎ 𝑥 ) ) ) |
| 105 | 104 | 3impb | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ( 𝑧 ·ℎ 𝑥 ) ) = ( 𝑦 ·ℎ ( 𝑧 ·ℎ 𝑥 ) ) ) |
| 106 | 102 105 | eqtrd | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ( 𝑧 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) ) = ( 𝑦 ·ℎ ( 𝑧 ·ℎ 𝑥 ) ) ) |
| 107 | 98 101 106 | 3eqtr4d | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( ( 𝑦 · 𝑧 ) ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) = ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ( 𝑧 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) ) ) |
| 108 | eqid | ⊢ 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 = 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 | |
| 109 | 3 13 46 53 80 96 107 108 | isvciOLD | ⊢ 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 ∈ CVecOLD |
| 110 | normf | ⊢ normℎ : ℋ ⟶ ℝ | |
| 111 | fssres | ⊢ ( ( normℎ : ℋ ⟶ ℝ ∧ 𝐻 ⊆ ℋ ) → ( normℎ ↾ 𝐻 ) : 𝐻 ⟶ ℝ ) | |
| 112 | 110 6 111 | mp2an | ⊢ ( normℎ ↾ 𝐻 ) : 𝐻 ⟶ ℝ |
| 113 | fvres | ⊢ ( 𝑥 ∈ 𝐻 → ( ( normℎ ↾ 𝐻 ) ‘ 𝑥 ) = ( normℎ ‘ 𝑥 ) ) | |
| 114 | 113 | eqeq1d | ⊢ ( 𝑥 ∈ 𝐻 → ( ( ( normℎ ↾ 𝐻 ) ‘ 𝑥 ) = 0 ↔ ( normℎ ‘ 𝑥 ) = 0 ) ) |
| 115 | norm-i | ⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ 𝑥 ) = 0 ↔ 𝑥 = 0ℎ ) ) | |
| 116 | 50 115 | syl | ⊢ ( 𝑥 ∈ 𝐻 → ( ( normℎ ‘ 𝑥 ) = 0 ↔ 𝑥 = 0ℎ ) ) |
| 117 | 114 116 | bitrd | ⊢ ( 𝑥 ∈ 𝐻 → ( ( ( normℎ ↾ 𝐻 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = 0ℎ ) ) |
| 118 | 117 | biimpa | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ ( ( normℎ ↾ 𝐻 ) ‘ 𝑥 ) = 0 ) → 𝑥 = 0ℎ ) |
| 119 | norm-iii | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( 𝑦 ·ℎ 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) | |
| 120 | 50 119 | sylan2 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( normℎ ‘ ( 𝑦 ·ℎ 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) |
| 121 | 67 | fveq2d | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( ( normℎ ↾ 𝐻 ) ‘ ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) ) = ( ( normℎ ↾ 𝐻 ) ‘ ( 𝑦 ·ℎ 𝑥 ) ) ) |
| 122 | fvres | ⊢ ( ( 𝑦 ·ℎ 𝑥 ) ∈ 𝐻 → ( ( normℎ ↾ 𝐻 ) ‘ ( 𝑦 ·ℎ 𝑥 ) ) = ( normℎ ‘ ( 𝑦 ·ℎ 𝑥 ) ) ) | |
| 123 | 73 122 | syl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( ( normℎ ↾ 𝐻 ) ‘ ( 𝑦 ·ℎ 𝑥 ) ) = ( normℎ ‘ ( 𝑦 ·ℎ 𝑥 ) ) ) |
| 124 | 121 123 | eqtrd | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( ( normℎ ↾ 𝐻 ) ‘ ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) ) = ( normℎ ‘ ( 𝑦 ·ℎ 𝑥 ) ) ) |
| 125 | 113 | adantl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( ( normℎ ↾ 𝐻 ) ‘ 𝑥 ) = ( normℎ ‘ 𝑥 ) ) |
| 126 | 125 | oveq2d | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( ( abs ‘ 𝑦 ) · ( ( normℎ ↾ 𝐻 ) ‘ 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) |
| 127 | 120 124 126 | 3eqtr4d | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( ( normℎ ↾ 𝐻 ) ‘ ( 𝑦 ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( ( normℎ ↾ 𝐻 ) ‘ 𝑥 ) ) ) |
| 128 | 2 | sheli | ⊢ ( 𝑦 ∈ 𝐻 → 𝑦 ∈ ℋ ) |
| 129 | norm-ii | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ≤ ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ) | |
| 130 | 50 128 129 | syl2an | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ≤ ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ) |
| 131 | ovres | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) = ( 𝑥 +ℎ 𝑦 ) ) | |
| 132 | 131 | fveq2d | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( ( normℎ ↾ 𝐻 ) ‘ ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ) = ( ( normℎ ↾ 𝐻 ) ‘ ( 𝑥 +ℎ 𝑦 ) ) ) |
| 133 | shaddcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ) | |
| 134 | 2 133 | mp3an1 | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ) |
| 135 | fvres | ⊢ ( ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 → ( ( normℎ ↾ 𝐻 ) ‘ ( 𝑥 +ℎ 𝑦 ) ) = ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) | |
| 136 | 134 135 | syl | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( ( normℎ ↾ 𝐻 ) ‘ ( 𝑥 +ℎ 𝑦 ) ) = ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) |
| 137 | 132 136 | eqtrd | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( ( normℎ ↾ 𝐻 ) ‘ ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ) = ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) |
| 138 | fvres | ⊢ ( 𝑦 ∈ 𝐻 → ( ( normℎ ↾ 𝐻 ) ‘ 𝑦 ) = ( normℎ ‘ 𝑦 ) ) | |
| 139 | 113 138 | oveqan12d | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( ( ( normℎ ↾ 𝐻 ) ‘ 𝑥 ) + ( ( normℎ ↾ 𝐻 ) ‘ 𝑦 ) ) = ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ) |
| 140 | 130 137 139 | 3brtr4d | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( ( normℎ ↾ 𝐻 ) ‘ ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ) ≤ ( ( ( normℎ ↾ 𝐻 ) ‘ 𝑥 ) + ( ( normℎ ↾ 𝐻 ) ‘ 𝑦 ) ) ) |
| 141 | 14 25 109 112 118 127 140 1 | isnvi | ⊢ 𝑊 ∈ NrmCVec |