This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Normed complex vector space property of a subspace. (Contributed by NM, 26-Mar-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhssnvt.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| hhssnv.2 | |- H e. SH |
||
| Assertion | hhssnv | |- W e. NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhssnvt.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| 2 | hhssnv.2 | |- H e. SH |
|
| 3 | 2 | hhssabloi | |- ( +h |` ( H X. H ) ) e. AbelOp |
| 4 | ablogrpo | |- ( ( +h |` ( H X. H ) ) e. AbelOp -> ( +h |` ( H X. H ) ) e. GrpOp ) |
|
| 5 | 3 4 | ax-mp | |- ( +h |` ( H X. H ) ) e. GrpOp |
| 6 | 2 | shssii | |- H C_ ~H |
| 7 | xpss12 | |- ( ( H C_ ~H /\ H C_ ~H ) -> ( H X. H ) C_ ( ~H X. ~H ) ) |
|
| 8 | 6 6 7 | mp2an | |- ( H X. H ) C_ ( ~H X. ~H ) |
| 9 | ax-hfvadd | |- +h : ( ~H X. ~H ) --> ~H |
|
| 10 | 9 | fdmi | |- dom +h = ( ~H X. ~H ) |
| 11 | 8 10 | sseqtrri | |- ( H X. H ) C_ dom +h |
| 12 | ssdmres | |- ( ( H X. H ) C_ dom +h <-> dom ( +h |` ( H X. H ) ) = ( H X. H ) ) |
|
| 13 | 11 12 | mpbi | |- dom ( +h |` ( H X. H ) ) = ( H X. H ) |
| 14 | 5 13 | grporn | |- H = ran ( +h |` ( H X. H ) ) |
| 15 | sh0 | |- ( H e. SH -> 0h e. H ) |
|
| 16 | 2 15 | ax-mp | |- 0h e. H |
| 17 | ovres | |- ( ( 0h e. H /\ 0h e. H ) -> ( 0h ( +h |` ( H X. H ) ) 0h ) = ( 0h +h 0h ) ) |
|
| 18 | 16 16 17 | mp2an | |- ( 0h ( +h |` ( H X. H ) ) 0h ) = ( 0h +h 0h ) |
| 19 | ax-hv0cl | |- 0h e. ~H |
|
| 20 | 19 | hvaddlidi | |- ( 0h +h 0h ) = 0h |
| 21 | 18 20 | eqtri | |- ( 0h ( +h |` ( H X. H ) ) 0h ) = 0h |
| 22 | eqid | |- ( GId ` ( +h |` ( H X. H ) ) ) = ( GId ` ( +h |` ( H X. H ) ) ) |
|
| 23 | 14 22 | grpoid | |- ( ( ( +h |` ( H X. H ) ) e. GrpOp /\ 0h e. H ) -> ( 0h = ( GId ` ( +h |` ( H X. H ) ) ) <-> ( 0h ( +h |` ( H X. H ) ) 0h ) = 0h ) ) |
| 24 | 5 16 23 | mp2an | |- ( 0h = ( GId ` ( +h |` ( H X. H ) ) ) <-> ( 0h ( +h |` ( H X. H ) ) 0h ) = 0h ) |
| 25 | 21 24 | mpbir | |- 0h = ( GId ` ( +h |` ( H X. H ) ) ) |
| 26 | ax-hfvmul | |- .h : ( CC X. ~H ) --> ~H |
|
| 27 | ffn | |- ( .h : ( CC X. ~H ) --> ~H -> .h Fn ( CC X. ~H ) ) |
|
| 28 | 26 27 | ax-mp | |- .h Fn ( CC X. ~H ) |
| 29 | ssid | |- CC C_ CC |
|
| 30 | xpss12 | |- ( ( CC C_ CC /\ H C_ ~H ) -> ( CC X. H ) C_ ( CC X. ~H ) ) |
|
| 31 | 29 6 30 | mp2an | |- ( CC X. H ) C_ ( CC X. ~H ) |
| 32 | fnssres | |- ( ( .h Fn ( CC X. ~H ) /\ ( CC X. H ) C_ ( CC X. ~H ) ) -> ( .h |` ( CC X. H ) ) Fn ( CC X. H ) ) |
|
| 33 | 28 31 32 | mp2an | |- ( .h |` ( CC X. H ) ) Fn ( CC X. H ) |
| 34 | ovelrn | |- ( ( .h |` ( CC X. H ) ) Fn ( CC X. H ) -> ( z e. ran ( .h |` ( CC X. H ) ) <-> E. x e. CC E. y e. H z = ( x ( .h |` ( CC X. H ) ) y ) ) ) |
|
| 35 | 33 34 | ax-mp | |- ( z e. ran ( .h |` ( CC X. H ) ) <-> E. x e. CC E. y e. H z = ( x ( .h |` ( CC X. H ) ) y ) ) |
| 36 | ovres | |- ( ( x e. CC /\ y e. H ) -> ( x ( .h |` ( CC X. H ) ) y ) = ( x .h y ) ) |
|
| 37 | shmulcl | |- ( ( H e. SH /\ x e. CC /\ y e. H ) -> ( x .h y ) e. H ) |
|
| 38 | 2 37 | mp3an1 | |- ( ( x e. CC /\ y e. H ) -> ( x .h y ) e. H ) |
| 39 | 36 38 | eqeltrd | |- ( ( x e. CC /\ y e. H ) -> ( x ( .h |` ( CC X. H ) ) y ) e. H ) |
| 40 | eleq1 | |- ( z = ( x ( .h |` ( CC X. H ) ) y ) -> ( z e. H <-> ( x ( .h |` ( CC X. H ) ) y ) e. H ) ) |
|
| 41 | 39 40 | syl5ibrcom | |- ( ( x e. CC /\ y e. H ) -> ( z = ( x ( .h |` ( CC X. H ) ) y ) -> z e. H ) ) |
| 42 | 41 | rexlimivv | |- ( E. x e. CC E. y e. H z = ( x ( .h |` ( CC X. H ) ) y ) -> z e. H ) |
| 43 | 35 42 | sylbi | |- ( z e. ran ( .h |` ( CC X. H ) ) -> z e. H ) |
| 44 | 43 | ssriv | |- ran ( .h |` ( CC X. H ) ) C_ H |
| 45 | df-f | |- ( ( .h |` ( CC X. H ) ) : ( CC X. H ) --> H <-> ( ( .h |` ( CC X. H ) ) Fn ( CC X. H ) /\ ran ( .h |` ( CC X. H ) ) C_ H ) ) |
|
| 46 | 33 44 45 | mpbir2an | |- ( .h |` ( CC X. H ) ) : ( CC X. H ) --> H |
| 47 | ax-1cn | |- 1 e. CC |
|
| 48 | ovres | |- ( ( 1 e. CC /\ x e. H ) -> ( 1 ( .h |` ( CC X. H ) ) x ) = ( 1 .h x ) ) |
|
| 49 | 47 48 | mpan | |- ( x e. H -> ( 1 ( .h |` ( CC X. H ) ) x ) = ( 1 .h x ) ) |
| 50 | 2 | sheli | |- ( x e. H -> x e. ~H ) |
| 51 | ax-hvmulid | |- ( x e. ~H -> ( 1 .h x ) = x ) |
|
| 52 | 50 51 | syl | |- ( x e. H -> ( 1 .h x ) = x ) |
| 53 | 49 52 | eqtrd | |- ( x e. H -> ( 1 ( .h |` ( CC X. H ) ) x ) = x ) |
| 54 | id | |- ( y e. CC -> y e. CC ) |
|
| 55 | 2 | sheli | |- ( z e. H -> z e. ~H ) |
| 56 | ax-hvdistr1 | |- ( ( y e. CC /\ x e. ~H /\ z e. ~H ) -> ( y .h ( x +h z ) ) = ( ( y .h x ) +h ( y .h z ) ) ) |
|
| 57 | 54 50 55 56 | syl3an | |- ( ( y e. CC /\ x e. H /\ z e. H ) -> ( y .h ( x +h z ) ) = ( ( y .h x ) +h ( y .h z ) ) ) |
| 58 | ovres | |- ( ( x e. H /\ z e. H ) -> ( x ( +h |` ( H X. H ) ) z ) = ( x +h z ) ) |
|
| 59 | 58 | 3adant1 | |- ( ( y e. CC /\ x e. H /\ z e. H ) -> ( x ( +h |` ( H X. H ) ) z ) = ( x +h z ) ) |
| 60 | 59 | oveq2d | |- ( ( y e. CC /\ x e. H /\ z e. H ) -> ( y ( .h |` ( CC X. H ) ) ( x ( +h |` ( H X. H ) ) z ) ) = ( y ( .h |` ( CC X. H ) ) ( x +h z ) ) ) |
| 61 | shaddcl | |- ( ( H e. SH /\ x e. H /\ z e. H ) -> ( x +h z ) e. H ) |
|
| 62 | 2 61 | mp3an1 | |- ( ( x e. H /\ z e. H ) -> ( x +h z ) e. H ) |
| 63 | ovres | |- ( ( y e. CC /\ ( x +h z ) e. H ) -> ( y ( .h |` ( CC X. H ) ) ( x +h z ) ) = ( y .h ( x +h z ) ) ) |
|
| 64 | 62 63 | sylan2 | |- ( ( y e. CC /\ ( x e. H /\ z e. H ) ) -> ( y ( .h |` ( CC X. H ) ) ( x +h z ) ) = ( y .h ( x +h z ) ) ) |
| 65 | 64 | 3impb | |- ( ( y e. CC /\ x e. H /\ z e. H ) -> ( y ( .h |` ( CC X. H ) ) ( x +h z ) ) = ( y .h ( x +h z ) ) ) |
| 66 | 60 65 | eqtrd | |- ( ( y e. CC /\ x e. H /\ z e. H ) -> ( y ( .h |` ( CC X. H ) ) ( x ( +h |` ( H X. H ) ) z ) ) = ( y .h ( x +h z ) ) ) |
| 67 | ovres | |- ( ( y e. CC /\ x e. H ) -> ( y ( .h |` ( CC X. H ) ) x ) = ( y .h x ) ) |
|
| 68 | 67 | 3adant3 | |- ( ( y e. CC /\ x e. H /\ z e. H ) -> ( y ( .h |` ( CC X. H ) ) x ) = ( y .h x ) ) |
| 69 | ovres | |- ( ( y e. CC /\ z e. H ) -> ( y ( .h |` ( CC X. H ) ) z ) = ( y .h z ) ) |
|
| 70 | 69 | 3adant2 | |- ( ( y e. CC /\ x e. H /\ z e. H ) -> ( y ( .h |` ( CC X. H ) ) z ) = ( y .h z ) ) |
| 71 | 68 70 | oveq12d | |- ( ( y e. CC /\ x e. H /\ z e. H ) -> ( ( y ( .h |` ( CC X. H ) ) x ) ( +h |` ( H X. H ) ) ( y ( .h |` ( CC X. H ) ) z ) ) = ( ( y .h x ) ( +h |` ( H X. H ) ) ( y .h z ) ) ) |
| 72 | shmulcl | |- ( ( H e. SH /\ y e. CC /\ x e. H ) -> ( y .h x ) e. H ) |
|
| 73 | 2 72 | mp3an1 | |- ( ( y e. CC /\ x e. H ) -> ( y .h x ) e. H ) |
| 74 | 73 | 3adant3 | |- ( ( y e. CC /\ x e. H /\ z e. H ) -> ( y .h x ) e. H ) |
| 75 | shmulcl | |- ( ( H e. SH /\ y e. CC /\ z e. H ) -> ( y .h z ) e. H ) |
|
| 76 | 2 75 | mp3an1 | |- ( ( y e. CC /\ z e. H ) -> ( y .h z ) e. H ) |
| 77 | 76 | 3adant2 | |- ( ( y e. CC /\ x e. H /\ z e. H ) -> ( y .h z ) e. H ) |
| 78 | 74 77 | ovresd | |- ( ( y e. CC /\ x e. H /\ z e. H ) -> ( ( y .h x ) ( +h |` ( H X. H ) ) ( y .h z ) ) = ( ( y .h x ) +h ( y .h z ) ) ) |
| 79 | 71 78 | eqtrd | |- ( ( y e. CC /\ x e. H /\ z e. H ) -> ( ( y ( .h |` ( CC X. H ) ) x ) ( +h |` ( H X. H ) ) ( y ( .h |` ( CC X. H ) ) z ) ) = ( ( y .h x ) +h ( y .h z ) ) ) |
| 80 | 57 66 79 | 3eqtr4d | |- ( ( y e. CC /\ x e. H /\ z e. H ) -> ( y ( .h |` ( CC X. H ) ) ( x ( +h |` ( H X. H ) ) z ) ) = ( ( y ( .h |` ( CC X. H ) ) x ) ( +h |` ( H X. H ) ) ( y ( .h |` ( CC X. H ) ) z ) ) ) |
| 81 | ax-hvdistr2 | |- ( ( y e. CC /\ z e. CC /\ x e. ~H ) -> ( ( y + z ) .h x ) = ( ( y .h x ) +h ( z .h x ) ) ) |
|
| 82 | 50 81 | syl3an3 | |- ( ( y e. CC /\ z e. CC /\ x e. H ) -> ( ( y + z ) .h x ) = ( ( y .h x ) +h ( z .h x ) ) ) |
| 83 | addcl | |- ( ( y e. CC /\ z e. CC ) -> ( y + z ) e. CC ) |
|
| 84 | ovres | |- ( ( ( y + z ) e. CC /\ x e. H ) -> ( ( y + z ) ( .h |` ( CC X. H ) ) x ) = ( ( y + z ) .h x ) ) |
|
| 85 | 83 84 | stoic3 | |- ( ( y e. CC /\ z e. CC /\ x e. H ) -> ( ( y + z ) ( .h |` ( CC X. H ) ) x ) = ( ( y + z ) .h x ) ) |
| 86 | 67 | 3adant2 | |- ( ( y e. CC /\ z e. CC /\ x e. H ) -> ( y ( .h |` ( CC X. H ) ) x ) = ( y .h x ) ) |
| 87 | ovres | |- ( ( z e. CC /\ x e. H ) -> ( z ( .h |` ( CC X. H ) ) x ) = ( z .h x ) ) |
|
| 88 | 87 | 3adant1 | |- ( ( y e. CC /\ z e. CC /\ x e. H ) -> ( z ( .h |` ( CC X. H ) ) x ) = ( z .h x ) ) |
| 89 | 86 88 | oveq12d | |- ( ( y e. CC /\ z e. CC /\ x e. H ) -> ( ( y ( .h |` ( CC X. H ) ) x ) ( +h |` ( H X. H ) ) ( z ( .h |` ( CC X. H ) ) x ) ) = ( ( y .h x ) ( +h |` ( H X. H ) ) ( z .h x ) ) ) |
| 90 | 73 | 3adant2 | |- ( ( y e. CC /\ z e. CC /\ x e. H ) -> ( y .h x ) e. H ) |
| 91 | shmulcl | |- ( ( H e. SH /\ z e. CC /\ x e. H ) -> ( z .h x ) e. H ) |
|
| 92 | 2 91 | mp3an1 | |- ( ( z e. CC /\ x e. H ) -> ( z .h x ) e. H ) |
| 93 | 92 | 3adant1 | |- ( ( y e. CC /\ z e. CC /\ x e. H ) -> ( z .h x ) e. H ) |
| 94 | 90 93 | ovresd | |- ( ( y e. CC /\ z e. CC /\ x e. H ) -> ( ( y .h x ) ( +h |` ( H X. H ) ) ( z .h x ) ) = ( ( y .h x ) +h ( z .h x ) ) ) |
| 95 | 89 94 | eqtrd | |- ( ( y e. CC /\ z e. CC /\ x e. H ) -> ( ( y ( .h |` ( CC X. H ) ) x ) ( +h |` ( H X. H ) ) ( z ( .h |` ( CC X. H ) ) x ) ) = ( ( y .h x ) +h ( z .h x ) ) ) |
| 96 | 82 85 95 | 3eqtr4d | |- ( ( y e. CC /\ z e. CC /\ x e. H ) -> ( ( y + z ) ( .h |` ( CC X. H ) ) x ) = ( ( y ( .h |` ( CC X. H ) ) x ) ( +h |` ( H X. H ) ) ( z ( .h |` ( CC X. H ) ) x ) ) ) |
| 97 | ax-hvmulass | |- ( ( y e. CC /\ z e. CC /\ x e. ~H ) -> ( ( y x. z ) .h x ) = ( y .h ( z .h x ) ) ) |
|
| 98 | 50 97 | syl3an3 | |- ( ( y e. CC /\ z e. CC /\ x e. H ) -> ( ( y x. z ) .h x ) = ( y .h ( z .h x ) ) ) |
| 99 | mulcl | |- ( ( y e. CC /\ z e. CC ) -> ( y x. z ) e. CC ) |
|
| 100 | ovres | |- ( ( ( y x. z ) e. CC /\ x e. H ) -> ( ( y x. z ) ( .h |` ( CC X. H ) ) x ) = ( ( y x. z ) .h x ) ) |
|
| 101 | 99 100 | stoic3 | |- ( ( y e. CC /\ z e. CC /\ x e. H ) -> ( ( y x. z ) ( .h |` ( CC X. H ) ) x ) = ( ( y x. z ) .h x ) ) |
| 102 | 88 | oveq2d | |- ( ( y e. CC /\ z e. CC /\ x e. H ) -> ( y ( .h |` ( CC X. H ) ) ( z ( .h |` ( CC X. H ) ) x ) ) = ( y ( .h |` ( CC X. H ) ) ( z .h x ) ) ) |
| 103 | ovres | |- ( ( y e. CC /\ ( z .h x ) e. H ) -> ( y ( .h |` ( CC X. H ) ) ( z .h x ) ) = ( y .h ( z .h x ) ) ) |
|
| 104 | 92 103 | sylan2 | |- ( ( y e. CC /\ ( z e. CC /\ x e. H ) ) -> ( y ( .h |` ( CC X. H ) ) ( z .h x ) ) = ( y .h ( z .h x ) ) ) |
| 105 | 104 | 3impb | |- ( ( y e. CC /\ z e. CC /\ x e. H ) -> ( y ( .h |` ( CC X. H ) ) ( z .h x ) ) = ( y .h ( z .h x ) ) ) |
| 106 | 102 105 | eqtrd | |- ( ( y e. CC /\ z e. CC /\ x e. H ) -> ( y ( .h |` ( CC X. H ) ) ( z ( .h |` ( CC X. H ) ) x ) ) = ( y .h ( z .h x ) ) ) |
| 107 | 98 101 106 | 3eqtr4d | |- ( ( y e. CC /\ z e. CC /\ x e. H ) -> ( ( y x. z ) ( .h |` ( CC X. H ) ) x ) = ( y ( .h |` ( CC X. H ) ) ( z ( .h |` ( CC X. H ) ) x ) ) ) |
| 108 | eqid | |- <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. = <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. |
|
| 109 | 3 13 46 53 80 96 107 108 | isvciOLD | |- <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. e. CVecOLD |
| 110 | normf | |- normh : ~H --> RR |
|
| 111 | fssres | |- ( ( normh : ~H --> RR /\ H C_ ~H ) -> ( normh |` H ) : H --> RR ) |
|
| 112 | 110 6 111 | mp2an | |- ( normh |` H ) : H --> RR |
| 113 | fvres | |- ( x e. H -> ( ( normh |` H ) ` x ) = ( normh ` x ) ) |
|
| 114 | 113 | eqeq1d | |- ( x e. H -> ( ( ( normh |` H ) ` x ) = 0 <-> ( normh ` x ) = 0 ) ) |
| 115 | norm-i | |- ( x e. ~H -> ( ( normh ` x ) = 0 <-> x = 0h ) ) |
|
| 116 | 50 115 | syl | |- ( x e. H -> ( ( normh ` x ) = 0 <-> x = 0h ) ) |
| 117 | 114 116 | bitrd | |- ( x e. H -> ( ( ( normh |` H ) ` x ) = 0 <-> x = 0h ) ) |
| 118 | 117 | biimpa | |- ( ( x e. H /\ ( ( normh |` H ) ` x ) = 0 ) -> x = 0h ) |
| 119 | norm-iii | |- ( ( y e. CC /\ x e. ~H ) -> ( normh ` ( y .h x ) ) = ( ( abs ` y ) x. ( normh ` x ) ) ) |
|
| 120 | 50 119 | sylan2 | |- ( ( y e. CC /\ x e. H ) -> ( normh ` ( y .h x ) ) = ( ( abs ` y ) x. ( normh ` x ) ) ) |
| 121 | 67 | fveq2d | |- ( ( y e. CC /\ x e. H ) -> ( ( normh |` H ) ` ( y ( .h |` ( CC X. H ) ) x ) ) = ( ( normh |` H ) ` ( y .h x ) ) ) |
| 122 | fvres | |- ( ( y .h x ) e. H -> ( ( normh |` H ) ` ( y .h x ) ) = ( normh ` ( y .h x ) ) ) |
|
| 123 | 73 122 | syl | |- ( ( y e. CC /\ x e. H ) -> ( ( normh |` H ) ` ( y .h x ) ) = ( normh ` ( y .h x ) ) ) |
| 124 | 121 123 | eqtrd | |- ( ( y e. CC /\ x e. H ) -> ( ( normh |` H ) ` ( y ( .h |` ( CC X. H ) ) x ) ) = ( normh ` ( y .h x ) ) ) |
| 125 | 113 | adantl | |- ( ( y e. CC /\ x e. H ) -> ( ( normh |` H ) ` x ) = ( normh ` x ) ) |
| 126 | 125 | oveq2d | |- ( ( y e. CC /\ x e. H ) -> ( ( abs ` y ) x. ( ( normh |` H ) ` x ) ) = ( ( abs ` y ) x. ( normh ` x ) ) ) |
| 127 | 120 124 126 | 3eqtr4d | |- ( ( y e. CC /\ x e. H ) -> ( ( normh |` H ) ` ( y ( .h |` ( CC X. H ) ) x ) ) = ( ( abs ` y ) x. ( ( normh |` H ) ` x ) ) ) |
| 128 | 2 | sheli | |- ( y e. H -> y e. ~H ) |
| 129 | norm-ii | |- ( ( x e. ~H /\ y e. ~H ) -> ( normh ` ( x +h y ) ) <_ ( ( normh ` x ) + ( normh ` y ) ) ) |
|
| 130 | 50 128 129 | syl2an | |- ( ( x e. H /\ y e. H ) -> ( normh ` ( x +h y ) ) <_ ( ( normh ` x ) + ( normh ` y ) ) ) |
| 131 | ovres | |- ( ( x e. H /\ y e. H ) -> ( x ( +h |` ( H X. H ) ) y ) = ( x +h y ) ) |
|
| 132 | 131 | fveq2d | |- ( ( x e. H /\ y e. H ) -> ( ( normh |` H ) ` ( x ( +h |` ( H X. H ) ) y ) ) = ( ( normh |` H ) ` ( x +h y ) ) ) |
| 133 | shaddcl | |- ( ( H e. SH /\ x e. H /\ y e. H ) -> ( x +h y ) e. H ) |
|
| 134 | 2 133 | mp3an1 | |- ( ( x e. H /\ y e. H ) -> ( x +h y ) e. H ) |
| 135 | fvres | |- ( ( x +h y ) e. H -> ( ( normh |` H ) ` ( x +h y ) ) = ( normh ` ( x +h y ) ) ) |
|
| 136 | 134 135 | syl | |- ( ( x e. H /\ y e. H ) -> ( ( normh |` H ) ` ( x +h y ) ) = ( normh ` ( x +h y ) ) ) |
| 137 | 132 136 | eqtrd | |- ( ( x e. H /\ y e. H ) -> ( ( normh |` H ) ` ( x ( +h |` ( H X. H ) ) y ) ) = ( normh ` ( x +h y ) ) ) |
| 138 | fvres | |- ( y e. H -> ( ( normh |` H ) ` y ) = ( normh ` y ) ) |
|
| 139 | 113 138 | oveqan12d | |- ( ( x e. H /\ y e. H ) -> ( ( ( normh |` H ) ` x ) + ( ( normh |` H ) ` y ) ) = ( ( normh ` x ) + ( normh ` y ) ) ) |
| 140 | 130 137 139 | 3brtr4d | |- ( ( x e. H /\ y e. H ) -> ( ( normh |` H ) ` ( x ( +h |` ( H X. H ) ) y ) ) <_ ( ( ( normh |` H ) ` x ) + ( ( normh |` H ) ` y ) ) ) |
| 141 | 14 25 109 112 118 127 140 1 | isnvi | |- W e. NrmCVec |