This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008) (Revised by Mario Carneiro, 23-Dec-2013) (Proof shortened by AV, 27-Aug-2021) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hhssabl.1 | ⊢ 𝐻 ∈ Sℋ | |
| Assertion | hhssabloi | ⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ AbelOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhssabl.1 | ⊢ 𝐻 ∈ Sℋ | |
| 2 | 1 | hhssabloilem | ⊢ ( +ℎ ∈ GrpOp ∧ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ GrpOp ∧ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ⊆ +ℎ ) |
| 3 | 2 | simp2i | ⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ GrpOp |
| 4 | 1 | shssii | ⊢ 𝐻 ⊆ ℋ |
| 5 | xpss12 | ⊢ ( ( 𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ ) → ( 𝐻 × 𝐻 ) ⊆ ( ℋ × ℋ ) ) | |
| 6 | 4 4 5 | mp2an | ⊢ ( 𝐻 × 𝐻 ) ⊆ ( ℋ × ℋ ) |
| 7 | ax-hfvadd | ⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ | |
| 8 | 7 | fdmi | ⊢ dom +ℎ = ( ℋ × ℋ ) |
| 9 | 6 8 | sseqtrri | ⊢ ( 𝐻 × 𝐻 ) ⊆ dom +ℎ |
| 10 | ssdmres | ⊢ ( ( 𝐻 × 𝐻 ) ⊆ dom +ℎ ↔ dom ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) = ( 𝐻 × 𝐻 ) ) | |
| 11 | 9 10 | mpbi | ⊢ dom ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) = ( 𝐻 × 𝐻 ) |
| 12 | 1 | sheli | ⊢ ( 𝑥 ∈ 𝐻 → 𝑥 ∈ ℋ ) |
| 13 | 1 | sheli | ⊢ ( 𝑦 ∈ 𝐻 → 𝑦 ∈ ℋ ) |
| 14 | ax-hvcom | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑦 +ℎ 𝑥 ) ) | |
| 15 | 12 13 14 | syl2an | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑦 +ℎ 𝑥 ) ) |
| 16 | ovres | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) = ( 𝑥 +ℎ 𝑦 ) ) | |
| 17 | ovres | ⊢ ( ( 𝑦 ∈ 𝐻 ∧ 𝑥 ∈ 𝐻 ) → ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( 𝑦 +ℎ 𝑥 ) ) | |
| 18 | 17 | ancoms | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( 𝑦 +ℎ 𝑥 ) ) |
| 19 | 15 16 18 | 3eqtr4d | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) = ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) ) |
| 20 | 3 11 19 | isabloi | ⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ AbelOp |