This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-hvdistr1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | cc | ⊢ ℂ | |
| 2 | 0 1 | wcel | ⊢ 𝐴 ∈ ℂ |
| 3 | cB | ⊢ 𝐵 | |
| 4 | chba | ⊢ ℋ | |
| 5 | 3 4 | wcel | ⊢ 𝐵 ∈ ℋ |
| 6 | cC | ⊢ 𝐶 | |
| 7 | 6 4 | wcel | ⊢ 𝐶 ∈ ℋ |
| 8 | 2 5 7 | w3a | ⊢ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) |
| 9 | csm | ⊢ ·ℎ | |
| 10 | cva | ⊢ +ℎ | |
| 11 | 3 6 10 | co | ⊢ ( 𝐵 +ℎ 𝐶 ) |
| 12 | 0 11 9 | co | ⊢ ( 𝐴 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) |
| 13 | 0 3 9 | co | ⊢ ( 𝐴 ·ℎ 𝐵 ) |
| 14 | 0 6 9 | co | ⊢ ( 𝐴 ·ℎ 𝐶 ) |
| 15 | 13 14 10 | co | ⊢ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( 𝐴 ·ℎ 𝐶 ) ) |
| 16 | 12 15 | wceq | ⊢ ( 𝐴 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( 𝐴 ·ℎ 𝐶 ) ) |
| 17 | 8 16 | wi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) |