This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a normed complex vector space. (Contributed by NM, 15-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnvi.5 | ⊢ 𝑋 = ran 𝐺 | |
| isnvi.6 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | ||
| isnvi.7 | ⊢ 〈 𝐺 , 𝑆 〉 ∈ CVecOLD | ||
| isnvi.8 | ⊢ 𝑁 : 𝑋 ⟶ ℝ | ||
| isnvi.9 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) = 0 ) → 𝑥 = 𝑍 ) | ||
| isnvi.10 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ) | ||
| isnvi.11 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) | ||
| isnvi.12 | ⊢ 𝑈 = 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 | ||
| Assertion | isnvi | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnvi.5 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | isnvi.6 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | |
| 3 | isnvi.7 | ⊢ 〈 𝐺 , 𝑆 〉 ∈ CVecOLD | |
| 4 | isnvi.8 | ⊢ 𝑁 : 𝑋 ⟶ ℝ | |
| 5 | isnvi.9 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) = 0 ) → 𝑥 = 𝑍 ) | |
| 6 | isnvi.10 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ) | |
| 7 | isnvi.11 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) | |
| 8 | isnvi.12 | ⊢ 𝑈 = 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 | |
| 9 | 5 | ex | ⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ) |
| 10 | 6 | ancoms | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) → ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ) |
| 11 | 10 | ralrimiva | ⊢ ( 𝑥 ∈ 𝑋 → ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ) |
| 12 | 7 | ralrimiva | ⊢ ( 𝑥 ∈ 𝑋 → ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 13 | 9 11 12 | 3jca | ⊢ ( 𝑥 ∈ 𝑋 → ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 14 | 13 | rgen | ⊢ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 15 | 1 2 | isnv | ⊢ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 16 | 3 4 14 15 | mpbir3an | ⊢ 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec |
| 17 | 8 16 | eqeltri | ⊢ 𝑈 ∈ NrmCVec |