This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Normed complex vector space property of a subspace. (Contributed by NM, 9-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hhssnvt.1 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| Assertion | hhssnvt | ⊢ ( 𝐻 ∈ Sℋ → 𝑊 ∈ NrmCVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhssnvt.1 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| 2 | xpeq1 | ⊢ ( 𝐻 = if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) → ( 𝐻 × 𝐻 ) = ( if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) × 𝐻 ) ) | |
| 3 | xpeq2 | ⊢ ( 𝐻 = if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) → ( if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) × 𝐻 ) = ( if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) | |
| 4 | 2 3 | eqtrd | ⊢ ( 𝐻 = if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) → ( 𝐻 × 𝐻 ) = ( if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) |
| 5 | 4 | reseq2d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) → ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) = ( +ℎ ↾ ( if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) ) |
| 6 | xpeq2 | ⊢ ( 𝐻 = if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) → ( ℂ × 𝐻 ) = ( ℂ × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) | |
| 7 | 6 | reseq2d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) → ( ·ℎ ↾ ( ℂ × 𝐻 ) ) = ( ·ℎ ↾ ( ℂ × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) ) |
| 8 | 5 7 | opeq12d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) → 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 = 〈 ( +ℎ ↾ ( if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) 〉 ) |
| 9 | reseq2 | ⊢ ( 𝐻 = if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) → ( normℎ ↾ 𝐻 ) = ( normℎ ↾ if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) | |
| 10 | 8 9 | opeq12d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) → 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 = 〈 〈 ( +ℎ ↾ ( if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) 〉 , ( normℎ ↾ if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) 〉 ) |
| 11 | 1 10 | eqtrid | ⊢ ( 𝐻 = if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) → 𝑊 = 〈 〈 ( +ℎ ↾ ( if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) 〉 , ( normℎ ↾ if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) 〉 ) |
| 12 | 11 | eleq1d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) → ( 𝑊 ∈ NrmCVec ↔ 〈 〈 ( +ℎ ↾ ( if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) 〉 , ( normℎ ↾ if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) 〉 ∈ NrmCVec ) ) |
| 13 | eqid | ⊢ 〈 〈 ( +ℎ ↾ ( if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) 〉 , ( normℎ ↾ if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) 〉 = 〈 〈 ( +ℎ ↾ ( if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) 〉 , ( normℎ ↾ if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) 〉 | |
| 14 | h0elsh | ⊢ 0ℋ ∈ Sℋ | |
| 15 | 14 | elimel | ⊢ if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ∈ Sℋ |
| 16 | 13 15 | hhssnv | ⊢ 〈 〈 ( +ℎ ↾ ( if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) , ( ·ℎ ↾ ( ℂ × if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) ) 〉 , ( normℎ ↾ if ( 𝐻 ∈ Sℋ , 𝐻 , 0ℋ ) ) 〉 ∈ NrmCVec |
| 17 | 12 16 | dedth | ⊢ ( 𝐻 ∈ Sℋ → 𝑊 ∈ NrmCVec ) |