This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm function maps from Hilbert space to reals. (Contributed by NM, 6-Sep-2007) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | normf | ⊢ normℎ : ℋ ⟶ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfhnorm2 | ⊢ normℎ = ( 𝑥 ∈ ℋ ↦ ( √ ‘ ( 𝑥 ·ih 𝑥 ) ) ) | |
| 2 | hiidrcl | ⊢ ( 𝑥 ∈ ℋ → ( 𝑥 ·ih 𝑥 ) ∈ ℝ ) | |
| 3 | hiidge0 | ⊢ ( 𝑥 ∈ ℋ → 0 ≤ ( 𝑥 ·ih 𝑥 ) ) | |
| 4 | 2 3 | resqrtcld | ⊢ ( 𝑥 ∈ ℋ → ( √ ‘ ( 𝑥 ·ih 𝑥 ) ) ∈ ℝ ) |
| 5 | 1 4 | fmpti | ⊢ normℎ : ℋ ⟶ ℝ |