This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a complex vector space. (Contributed by NM, 5-Nov-2006) Obsolete version of iscvsi . (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isvciOLD.1 | ⊢ 𝐺 ∈ AbelOp | |
| isvciOLD.2 | ⊢ dom 𝐺 = ( 𝑋 × 𝑋 ) | ||
| isvciOLD.3 | ⊢ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 | ||
| isvciOLD.4 | ⊢ ( 𝑥 ∈ 𝑋 → ( 1 𝑆 𝑥 ) = 𝑥 ) | ||
| isvciOLD.5 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) | ||
| isvciOLD.6 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ) | ||
| isvciOLD.7 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) | ||
| isvciOLD.8 | ⊢ 𝑊 = 〈 𝐺 , 𝑆 〉 | ||
| Assertion | isvciOLD | ⊢ 𝑊 ∈ CVecOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isvciOLD.1 | ⊢ 𝐺 ∈ AbelOp | |
| 2 | isvciOLD.2 | ⊢ dom 𝐺 = ( 𝑋 × 𝑋 ) | |
| 3 | isvciOLD.3 | ⊢ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 | |
| 4 | isvciOLD.4 | ⊢ ( 𝑥 ∈ 𝑋 → ( 1 𝑆 𝑥 ) = 𝑥 ) | |
| 5 | isvciOLD.5 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) | |
| 6 | isvciOLD.6 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ) | |
| 7 | isvciOLD.7 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) | |
| 8 | isvciOLD.8 | ⊢ 𝑊 = 〈 𝐺 , 𝑆 〉 | |
| 9 | 5 | 3com12 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) |
| 10 | 9 | 3expa | ⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) |
| 11 | 10 | ralrimiva | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) → ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) |
| 12 | 6 7 | jca | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) |
| 13 | 12 | 3comr | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) |
| 14 | 13 | 3expa | ⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ 𝑧 ∈ ℂ ) → ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) |
| 15 | 14 | ralrimiva | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) → ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) |
| 16 | 11 15 | jca | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) → ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) |
| 17 | 16 | ralrimiva | ⊢ ( 𝑥 ∈ 𝑋 → ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) |
| 18 | 4 17 | jca | ⊢ ( 𝑥 ∈ 𝑋 → ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) |
| 19 | 18 | rgen | ⊢ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) |
| 20 | ablogrpo | ⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) | |
| 21 | 1 20 | ax-mp | ⊢ 𝐺 ∈ GrpOp |
| 22 | 21 2 | grporn | ⊢ 𝑋 = ran 𝐺 |
| 23 | 22 | isvcOLD | ⊢ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ↔ ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) |
| 24 | 1 3 19 23 | mpbir3an | ⊢ 〈 𝐺 , 𝑆 〉 ∈ CVecOLD |
| 25 | 8 24 | eqeltri | ⊢ 𝑊 ∈ CVecOLD |