This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 3.3(iii) of Beran p. 97. (Contributed by NM, 25-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | norm-iii | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( normℎ ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( normℎ ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) ) ) | |
| 2 | fveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( abs ‘ 𝐴 ) = ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) ) | |
| 3 | 2 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( abs ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( normℎ ‘ 𝐵 ) ) ) |
| 4 | 1 3 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( normℎ ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ↔ ( normℎ ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( normℎ ‘ 𝐵 ) ) ) ) |
| 5 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 6 | 5 | fveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( normℎ ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) ) = ( normℎ ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 7 | fveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( normℎ ‘ 𝐵 ) = ( normℎ ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( normℎ ‘ 𝐵 ) ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( normℎ ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 9 | 6 8 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( normℎ ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( normℎ ‘ 𝐵 ) ) ↔ ( normℎ ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( normℎ ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) ) |
| 10 | 0cn | ⊢ 0 ∈ ℂ | |
| 11 | 10 | elimel | ⊢ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ∈ ℂ |
| 12 | ifhvhv0 | ⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ | |
| 13 | 11 12 | norm-iii-i | ⊢ ( normℎ ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( normℎ ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) |
| 14 | 4 9 13 | dedth2h | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ) |