This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that an element of a group is the identity element. (Contributed by Paul Chapman, 25-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpoinveu.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpoinveu.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | ||
| Assertion | grpoid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 = 𝑈 ↔ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpoinveu.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpoinveu.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | |
| 3 | 1 2 | grpoidcl | ⊢ ( 𝐺 ∈ GrpOp → 𝑈 ∈ 𝑋 ) |
| 4 | 1 | grporcan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑈 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) ↔ 𝐴 = 𝑈 ) ) |
| 5 | 4 | 3exp2 | ⊢ ( 𝐺 ∈ GrpOp → ( 𝐴 ∈ 𝑋 → ( 𝑈 ∈ 𝑋 → ( 𝐴 ∈ 𝑋 → ( ( 𝐴 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) ↔ 𝐴 = 𝑈 ) ) ) ) ) |
| 6 | 3 5 | mpid | ⊢ ( 𝐺 ∈ GrpOp → ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ 𝑋 → ( ( 𝐴 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) ↔ 𝐴 = 𝑈 ) ) ) ) |
| 7 | 6 | pm2.43d | ⊢ ( 𝐺 ∈ GrpOp → ( 𝐴 ∈ 𝑋 → ( ( 𝐴 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) ↔ 𝐴 = 𝑈 ) ) ) |
| 8 | 7 | imp | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) ↔ 𝐴 = 𝑈 ) ) |
| 9 | 1 2 | grpolid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑈 𝐺 𝐴 ) = 𝐴 ) |
| 10 | 9 | eqeq2d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) ↔ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) |
| 11 | 8 10 | bitr3d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 = 𝑈 ↔ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) |