This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Simplify the cardinal A ^ NN of hausmapdom to ~P B = 2 ^ B when B is an infinite cardinal greater than A . (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hauspwdom.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | hauspwdom | ⊢ ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ≼ 𝒫 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hauspwdom.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | hausmapdom | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ≼ ( 𝐴 ↑m ℕ ) ) |
| 3 | 2 | adantr | ⊢ ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ≼ ( 𝐴 ↑m ℕ ) ) |
| 4 | simprr | ⊢ ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) → ℕ ≼ 𝐵 ) | |
| 5 | 1nn | ⊢ 1 ∈ ℕ | |
| 6 | noel | ⊢ ¬ 1 ∈ ∅ | |
| 7 | eleq2 | ⊢ ( ℕ = ∅ → ( 1 ∈ ℕ ↔ 1 ∈ ∅ ) ) | |
| 8 | 6 7 | mtbiri | ⊢ ( ℕ = ∅ → ¬ 1 ∈ ℕ ) |
| 9 | 8 | adantr | ⊢ ( ( ℕ = ∅ ∧ 𝐴 = ∅ ) → ¬ 1 ∈ ℕ ) |
| 10 | 5 9 | mt2 | ⊢ ¬ ( ℕ = ∅ ∧ 𝐴 = ∅ ) |
| 11 | mapdom2 | ⊢ ( ( ℕ ≼ 𝐵 ∧ ¬ ( ℕ = ∅ ∧ 𝐴 = ∅ ) ) → ( 𝐴 ↑m ℕ ) ≼ ( 𝐴 ↑m 𝐵 ) ) | |
| 12 | 4 10 11 | sylancl | ⊢ ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) → ( 𝐴 ↑m ℕ ) ≼ ( 𝐴 ↑m 𝐵 ) ) |
| 13 | sdomdom | ⊢ ( 𝐴 ≺ 2o → 𝐴 ≼ 2o ) | |
| 14 | 13 | adantl | ⊢ ( ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) ∧ 𝐴 ≺ 2o ) → 𝐴 ≼ 2o ) |
| 15 | mapdom1 | ⊢ ( 𝐴 ≼ 2o → ( 𝐴 ↑m 𝐵 ) ≼ ( 2o ↑m 𝐵 ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) ∧ 𝐴 ≺ 2o ) → ( 𝐴 ↑m 𝐵 ) ≼ ( 2o ↑m 𝐵 ) ) |
| 17 | reldom | ⊢ Rel ≼ | |
| 18 | 17 | brrelex2i | ⊢ ( ℕ ≼ 𝐵 → 𝐵 ∈ V ) |
| 19 | 18 | ad2antll | ⊢ ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) → 𝐵 ∈ V ) |
| 20 | pw2eng | ⊢ ( 𝐵 ∈ V → 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ) | |
| 21 | ensym | ⊢ ( 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) → ( 2o ↑m 𝐵 ) ≈ 𝒫 𝐵 ) | |
| 22 | 19 20 21 | 3syl | ⊢ ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) → ( 2o ↑m 𝐵 ) ≈ 𝒫 𝐵 ) |
| 23 | 22 | adantr | ⊢ ( ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) ∧ 𝐴 ≺ 2o ) → ( 2o ↑m 𝐵 ) ≈ 𝒫 𝐵 ) |
| 24 | domentr | ⊢ ( ( ( 𝐴 ↑m 𝐵 ) ≼ ( 2o ↑m 𝐵 ) ∧ ( 2o ↑m 𝐵 ) ≈ 𝒫 𝐵 ) → ( 𝐴 ↑m 𝐵 ) ≼ 𝒫 𝐵 ) | |
| 25 | 16 23 24 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) ∧ 𝐴 ≺ 2o ) → ( 𝐴 ↑m 𝐵 ) ≼ 𝒫 𝐵 ) |
| 26 | onfin2 | ⊢ ω = ( On ∩ Fin ) | |
| 27 | inss2 | ⊢ ( On ∩ Fin ) ⊆ Fin | |
| 28 | 26 27 | eqsstri | ⊢ ω ⊆ Fin |
| 29 | 2onn | ⊢ 2o ∈ ω | |
| 30 | 28 29 | sselii | ⊢ 2o ∈ Fin |
| 31 | simprl | ⊢ ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) → 𝐴 ≼ 𝒫 𝐵 ) | |
| 32 | 17 | brrelex1i | ⊢ ( 𝐴 ≼ 𝒫 𝐵 → 𝐴 ∈ V ) |
| 33 | 31 32 | syl | ⊢ ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) → 𝐴 ∈ V ) |
| 34 | fidomtri | ⊢ ( ( 2o ∈ Fin ∧ 𝐴 ∈ V ) → ( 2o ≼ 𝐴 ↔ ¬ 𝐴 ≺ 2o ) ) | |
| 35 | 30 33 34 | sylancr | ⊢ ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) → ( 2o ≼ 𝐴 ↔ ¬ 𝐴 ≺ 2o ) ) |
| 36 | 35 | biimpar | ⊢ ( ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) ∧ ¬ 𝐴 ≺ 2o ) → 2o ≼ 𝐴 ) |
| 37 | numth3 | ⊢ ( 𝐵 ∈ V → 𝐵 ∈ dom card ) | |
| 38 | 19 37 | syl | ⊢ ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) → 𝐵 ∈ dom card ) |
| 39 | 38 | adantr | ⊢ ( ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) ∧ 2o ≼ 𝐴 ) → 𝐵 ∈ dom card ) |
| 40 | nnenom | ⊢ ℕ ≈ ω | |
| 41 | 40 | ensymi | ⊢ ω ≈ ℕ |
| 42 | endomtr | ⊢ ( ( ω ≈ ℕ ∧ ℕ ≼ 𝐵 ) → ω ≼ 𝐵 ) | |
| 43 | 41 4 42 | sylancr | ⊢ ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) → ω ≼ 𝐵 ) |
| 44 | 43 | adantr | ⊢ ( ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) ∧ 2o ≼ 𝐴 ) → ω ≼ 𝐵 ) |
| 45 | simpr | ⊢ ( ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) ∧ 2o ≼ 𝐴 ) → 2o ≼ 𝐴 ) | |
| 46 | 31 | adantr | ⊢ ( ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) ∧ 2o ≼ 𝐴 ) → 𝐴 ≼ 𝒫 𝐵 ) |
| 47 | mappwen | ⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( 𝐴 ↑m 𝐵 ) ≈ 𝒫 𝐵 ) | |
| 48 | 39 44 45 46 47 | syl22anc | ⊢ ( ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) ∧ 2o ≼ 𝐴 ) → ( 𝐴 ↑m 𝐵 ) ≈ 𝒫 𝐵 ) |
| 49 | endom | ⊢ ( ( 𝐴 ↑m 𝐵 ) ≈ 𝒫 𝐵 → ( 𝐴 ↑m 𝐵 ) ≼ 𝒫 𝐵 ) | |
| 50 | 48 49 | syl | ⊢ ( ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) ∧ 2o ≼ 𝐴 ) → ( 𝐴 ↑m 𝐵 ) ≼ 𝒫 𝐵 ) |
| 51 | 36 50 | syldan | ⊢ ( ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) ∧ ¬ 𝐴 ≺ 2o ) → ( 𝐴 ↑m 𝐵 ) ≼ 𝒫 𝐵 ) |
| 52 | 25 51 | pm2.61dan | ⊢ ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) → ( 𝐴 ↑m 𝐵 ) ≼ 𝒫 𝐵 ) |
| 53 | domtr | ⊢ ( ( ( 𝐴 ↑m ℕ ) ≼ ( 𝐴 ↑m 𝐵 ) ∧ ( 𝐴 ↑m 𝐵 ) ≼ 𝒫 𝐵 ) → ( 𝐴 ↑m ℕ ) ≼ 𝒫 𝐵 ) | |
| 54 | 12 52 53 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) → ( 𝐴 ↑m ℕ ) ≼ 𝒫 𝐵 ) |
| 55 | domtr | ⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ≼ ( 𝐴 ↑m ℕ ) ∧ ( 𝐴 ↑m ℕ ) ≼ 𝒫 𝐵 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ≼ 𝒫 𝐵 ) | |
| 56 | 3 54 55 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ≼ 𝒫 𝐵 ) |