This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fidomtri | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnsym | ⊢ ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) | |
| 2 | finnum | ⊢ ( 𝐴 ∈ Fin → 𝐴 ∈ dom card ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ dom card ) |
| 4 | finnum | ⊢ ( 𝐵 ∈ Fin → 𝐵 ∈ dom card ) | |
| 5 | domtri2 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) | |
| 6 | 3 4 5 | syl2an | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐵 ∈ Fin ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) |
| 7 | 6 | biimprd | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐵 ∈ Fin ) → ( ¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵 ) ) |
| 8 | isinffi | ⊢ ( ( ¬ 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin ) → ∃ 𝑎 𝑎 : 𝐴 –1-1→ 𝐵 ) | |
| 9 | 8 | ancoms | ⊢ ( ( 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin ) → ∃ 𝑎 𝑎 : 𝐴 –1-1→ 𝐵 ) |
| 10 | 9 | adantlr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ) ∧ ¬ 𝐵 ∈ Fin ) → ∃ 𝑎 𝑎 : 𝐴 –1-1→ 𝐵 ) |
| 11 | brdomg | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑎 𝑎 : 𝐴 –1-1→ 𝐵 ) ) | |
| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ) ∧ ¬ 𝐵 ∈ Fin ) → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑎 𝑎 : 𝐴 –1-1→ 𝐵 ) ) |
| 13 | 10 12 | mpbird | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ) ∧ ¬ 𝐵 ∈ Fin ) → 𝐴 ≼ 𝐵 ) |
| 14 | 13 | a1d | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ) ∧ ¬ 𝐵 ∈ Fin ) → ( ¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵 ) ) |
| 15 | 7 14 | pm2.61dan | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ) → ( ¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵 ) ) |
| 16 | 1 15 | impbid2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) |