This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Power rule for cardinal arithmetic. Theorem 11.21 of TakeutiZaring p. 106. (Contributed by Mario Carneiro, 9-Mar-2013) (Revised by Mario Carneiro, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mappwen | ⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( 𝐴 ↑m 𝐵 ) ≈ 𝒫 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | ⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → 𝐴 ≼ 𝒫 𝐵 ) | |
| 2 | pw2eng | ⊢ ( 𝐵 ∈ dom card → 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ) | |
| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ) |
| 4 | domentr | ⊢ ( ( 𝐴 ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ) → 𝐴 ≼ ( 2o ↑m 𝐵 ) ) | |
| 5 | 1 3 4 | syl2anc | ⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → 𝐴 ≼ ( 2o ↑m 𝐵 ) ) |
| 6 | mapdom1 | ⊢ ( 𝐴 ≼ ( 2o ↑m 𝐵 ) → ( 𝐴 ↑m 𝐵 ) ≼ ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( 𝐴 ↑m 𝐵 ) ≼ ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ) |
| 8 | 2on | ⊢ 2o ∈ On | |
| 9 | simpll | ⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → 𝐵 ∈ dom card ) | |
| 10 | mapxpen | ⊢ ( ( 2o ∈ On ∧ 𝐵 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ≈ ( 2o ↑m ( 𝐵 × 𝐵 ) ) ) | |
| 11 | 8 9 9 10 | mp3an2i | ⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ≈ ( 2o ↑m ( 𝐵 × 𝐵 ) ) ) |
| 12 | 8 | elexi | ⊢ 2o ∈ V |
| 13 | 12 | enref | ⊢ 2o ≈ 2o |
| 14 | infxpidm2 | ⊢ ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) → ( 𝐵 × 𝐵 ) ≈ 𝐵 ) | |
| 15 | 14 | adantr | ⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( 𝐵 × 𝐵 ) ≈ 𝐵 ) |
| 16 | mapen | ⊢ ( ( 2o ≈ 2o ∧ ( 𝐵 × 𝐵 ) ≈ 𝐵 ) → ( 2o ↑m ( 𝐵 × 𝐵 ) ) ≈ ( 2o ↑m 𝐵 ) ) | |
| 17 | 13 15 16 | sylancr | ⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( 2o ↑m ( 𝐵 × 𝐵 ) ) ≈ ( 2o ↑m 𝐵 ) ) |
| 18 | entr | ⊢ ( ( ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ≈ ( 2o ↑m ( 𝐵 × 𝐵 ) ) ∧ ( 2o ↑m ( 𝐵 × 𝐵 ) ) ≈ ( 2o ↑m 𝐵 ) ) → ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ≈ ( 2o ↑m 𝐵 ) ) | |
| 19 | 11 17 18 | syl2anc | ⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ≈ ( 2o ↑m 𝐵 ) ) |
| 20 | 3 | ensymd | ⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( 2o ↑m 𝐵 ) ≈ 𝒫 𝐵 ) |
| 21 | entr | ⊢ ( ( ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ≈ ( 2o ↑m 𝐵 ) ∧ ( 2o ↑m 𝐵 ) ≈ 𝒫 𝐵 ) → ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ≈ 𝒫 𝐵 ) | |
| 22 | 19 20 21 | syl2anc | ⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ≈ 𝒫 𝐵 ) |
| 23 | domentr | ⊢ ( ( ( 𝐴 ↑m 𝐵 ) ≼ ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ∧ ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ≈ 𝒫 𝐵 ) → ( 𝐴 ↑m 𝐵 ) ≼ 𝒫 𝐵 ) | |
| 24 | 7 22 23 | syl2anc | ⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( 𝐴 ↑m 𝐵 ) ≼ 𝒫 𝐵 ) |
| 25 | mapdom1 | ⊢ ( 2o ≼ 𝐴 → ( 2o ↑m 𝐵 ) ≼ ( 𝐴 ↑m 𝐵 ) ) | |
| 26 | 25 | ad2antrl | ⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( 2o ↑m 𝐵 ) ≼ ( 𝐴 ↑m 𝐵 ) ) |
| 27 | endomtr | ⊢ ( ( 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ∧ ( 2o ↑m 𝐵 ) ≼ ( 𝐴 ↑m 𝐵 ) ) → 𝒫 𝐵 ≼ ( 𝐴 ↑m 𝐵 ) ) | |
| 28 | 3 26 27 | syl2anc | ⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → 𝒫 𝐵 ≼ ( 𝐴 ↑m 𝐵 ) ) |
| 29 | sbth | ⊢ ( ( ( 𝐴 ↑m 𝐵 ) ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ≼ ( 𝐴 ↑m 𝐵 ) ) → ( 𝐴 ↑m 𝐵 ) ≈ 𝒫 𝐵 ) | |
| 30 | 24 28 29 | syl2anc | ⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( 𝐴 ↑m 𝐵 ) ≈ 𝒫 𝐵 ) |