This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If X is a first-countable Hausdorff space, then the cardinality of the closure of a set A is bounded by NN to the power A . In particular, a first-countable Hausdorff space with a dense subset A has cardinality at most A ^ NN , and a separable first-countable Hausdorff space has cardinality at most ~P NN . (Compare hauspwpwdom to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hauspwdom.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | hausmapdom | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ≼ ( 𝐴 ↑m ℕ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hauspwdom.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | 1stcelcls | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐴 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) |
| 3 | 2 | 3adant1 | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐴 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) |
| 4 | uniexg | ⊢ ( 𝐽 ∈ Haus → ∪ 𝐽 ∈ V ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ∪ 𝐽 ∈ V ) |
| 6 | 1 5 | eqeltrid | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → 𝑋 ∈ V ) |
| 7 | simp3 | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ 𝑋 ) | |
| 8 | 6 7 | ssexd | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ V ) |
| 9 | nnex | ⊢ ℕ ∈ V | |
| 10 | elmapg | ⊢ ( ( 𝐴 ∈ V ∧ ℕ ∈ V ) → ( 𝑓 ∈ ( 𝐴 ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ 𝐴 ) ) | |
| 11 | 8 9 10 | sylancl | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑓 ∈ ( 𝐴 ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ 𝐴 ) ) |
| 12 | 11 | anbi1d | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝑓 ∈ ( 𝐴 ↑m ℕ ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ↔ ( 𝑓 : ℕ ⟶ 𝐴 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) |
| 13 | 12 | exbidv | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( ∃ 𝑓 ( 𝑓 ∈ ( 𝐴 ↑m ℕ ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐴 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) |
| 14 | 3 13 | bitr4d | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ∃ 𝑓 ( 𝑓 ∈ ( 𝐴 ↑m ℕ ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) |
| 15 | df-rex | ⊢ ( ∃ 𝑓 ∈ ( 𝐴 ↑m ℕ ) 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ↔ ∃ 𝑓 ( 𝑓 ∈ ( 𝐴 ↑m ℕ ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) | |
| 16 | 14 15 | bitr4di | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ∃ 𝑓 ∈ ( 𝐴 ↑m ℕ ) 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) |
| 17 | vex | ⊢ 𝑥 ∈ V | |
| 18 | 17 | elima | ⊢ ( 𝑥 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝐴 ↑m ℕ ) ) ↔ ∃ 𝑓 ∈ ( 𝐴 ↑m ℕ ) 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) |
| 19 | 16 18 | bitr4di | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ 𝑥 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝐴 ↑m ℕ ) ) ) ) |
| 20 | 19 | eqrdv | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝐴 ↑m ℕ ) ) ) |
| 21 | ovex | ⊢ ( 𝐴 ↑m ℕ ) ∈ V | |
| 22 | lmfun | ⊢ ( 𝐽 ∈ Haus → Fun ( ⇝𝑡 ‘ 𝐽 ) ) | |
| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → Fun ( ⇝𝑡 ‘ 𝐽 ) ) |
| 24 | imadomg | ⊢ ( ( 𝐴 ↑m ℕ ) ∈ V → ( Fun ( ⇝𝑡 ‘ 𝐽 ) → ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝐴 ↑m ℕ ) ) ≼ ( 𝐴 ↑m ℕ ) ) ) | |
| 25 | 21 23 24 | mpsyl | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝐴 ↑m ℕ ) ) ≼ ( 𝐴 ↑m ℕ ) ) |
| 26 | 20 25 | eqbrtrd | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ≼ ( 𝐴 ↑m ℕ ) ) |