This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Simplify the cardinal A ^ NN of hausmapdom to ~P B = 2 ^ B when B is an infinite cardinal greater than A . (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hauspwdom.1 | |- X = U. J |
|
| Assertion | hauspwdom | |- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> ( ( cls ` J ) ` A ) ~<_ ~P B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hauspwdom.1 | |- X = U. J |
|
| 2 | 1 | hausmapdom | |- ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) -> ( ( cls ` J ) ` A ) ~<_ ( A ^m NN ) ) |
| 3 | 2 | adantr | |- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> ( ( cls ` J ) ` A ) ~<_ ( A ^m NN ) ) |
| 4 | simprr | |- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> NN ~<_ B ) |
|
| 5 | 1nn | |- 1 e. NN |
|
| 6 | noel | |- -. 1 e. (/) |
|
| 7 | eleq2 | |- ( NN = (/) -> ( 1 e. NN <-> 1 e. (/) ) ) |
|
| 8 | 6 7 | mtbiri | |- ( NN = (/) -> -. 1 e. NN ) |
| 9 | 8 | adantr | |- ( ( NN = (/) /\ A = (/) ) -> -. 1 e. NN ) |
| 10 | 5 9 | mt2 | |- -. ( NN = (/) /\ A = (/) ) |
| 11 | mapdom2 | |- ( ( NN ~<_ B /\ -. ( NN = (/) /\ A = (/) ) ) -> ( A ^m NN ) ~<_ ( A ^m B ) ) |
|
| 12 | 4 10 11 | sylancl | |- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> ( A ^m NN ) ~<_ ( A ^m B ) ) |
| 13 | sdomdom | |- ( A ~< 2o -> A ~<_ 2o ) |
|
| 14 | 13 | adantl | |- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ A ~< 2o ) -> A ~<_ 2o ) |
| 15 | mapdom1 | |- ( A ~<_ 2o -> ( A ^m B ) ~<_ ( 2o ^m B ) ) |
|
| 16 | 14 15 | syl | |- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ A ~< 2o ) -> ( A ^m B ) ~<_ ( 2o ^m B ) ) |
| 17 | reldom | |- Rel ~<_ |
|
| 18 | 17 | brrelex2i | |- ( NN ~<_ B -> B e. _V ) |
| 19 | 18 | ad2antll | |- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> B e. _V ) |
| 20 | pw2eng | |- ( B e. _V -> ~P B ~~ ( 2o ^m B ) ) |
|
| 21 | ensym | |- ( ~P B ~~ ( 2o ^m B ) -> ( 2o ^m B ) ~~ ~P B ) |
|
| 22 | 19 20 21 | 3syl | |- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> ( 2o ^m B ) ~~ ~P B ) |
| 23 | 22 | adantr | |- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ A ~< 2o ) -> ( 2o ^m B ) ~~ ~P B ) |
| 24 | domentr | |- ( ( ( A ^m B ) ~<_ ( 2o ^m B ) /\ ( 2o ^m B ) ~~ ~P B ) -> ( A ^m B ) ~<_ ~P B ) |
|
| 25 | 16 23 24 | syl2anc | |- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ A ~< 2o ) -> ( A ^m B ) ~<_ ~P B ) |
| 26 | onfin2 | |- _om = ( On i^i Fin ) |
|
| 27 | inss2 | |- ( On i^i Fin ) C_ Fin |
|
| 28 | 26 27 | eqsstri | |- _om C_ Fin |
| 29 | 2onn | |- 2o e. _om |
|
| 30 | 28 29 | sselii | |- 2o e. Fin |
| 31 | simprl | |- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> A ~<_ ~P B ) |
|
| 32 | 17 | brrelex1i | |- ( A ~<_ ~P B -> A e. _V ) |
| 33 | 31 32 | syl | |- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> A e. _V ) |
| 34 | fidomtri | |- ( ( 2o e. Fin /\ A e. _V ) -> ( 2o ~<_ A <-> -. A ~< 2o ) ) |
|
| 35 | 30 33 34 | sylancr | |- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> ( 2o ~<_ A <-> -. A ~< 2o ) ) |
| 36 | 35 | biimpar | |- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ -. A ~< 2o ) -> 2o ~<_ A ) |
| 37 | numth3 | |- ( B e. _V -> B e. dom card ) |
|
| 38 | 19 37 | syl | |- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> B e. dom card ) |
| 39 | 38 | adantr | |- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ 2o ~<_ A ) -> B e. dom card ) |
| 40 | nnenom | |- NN ~~ _om |
|
| 41 | 40 | ensymi | |- _om ~~ NN |
| 42 | endomtr | |- ( ( _om ~~ NN /\ NN ~<_ B ) -> _om ~<_ B ) |
|
| 43 | 41 4 42 | sylancr | |- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> _om ~<_ B ) |
| 44 | 43 | adantr | |- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ 2o ~<_ A ) -> _om ~<_ B ) |
| 45 | simpr | |- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ 2o ~<_ A ) -> 2o ~<_ A ) |
|
| 46 | 31 | adantr | |- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ 2o ~<_ A ) -> A ~<_ ~P B ) |
| 47 | mappwen | |- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( A ^m B ) ~~ ~P B ) |
|
| 48 | 39 44 45 46 47 | syl22anc | |- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ 2o ~<_ A ) -> ( A ^m B ) ~~ ~P B ) |
| 49 | endom | |- ( ( A ^m B ) ~~ ~P B -> ( A ^m B ) ~<_ ~P B ) |
|
| 50 | 48 49 | syl | |- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ 2o ~<_ A ) -> ( A ^m B ) ~<_ ~P B ) |
| 51 | 36 50 | syldan | |- ( ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) /\ -. A ~< 2o ) -> ( A ^m B ) ~<_ ~P B ) |
| 52 | 25 51 | pm2.61dan | |- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> ( A ^m B ) ~<_ ~P B ) |
| 53 | domtr | |- ( ( ( A ^m NN ) ~<_ ( A ^m B ) /\ ( A ^m B ) ~<_ ~P B ) -> ( A ^m NN ) ~<_ ~P B ) |
|
| 54 | 12 52 53 | syl2anc | |- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> ( A ^m NN ) ~<_ ~P B ) |
| 55 | domtr | |- ( ( ( ( cls ` J ) ` A ) ~<_ ( A ^m NN ) /\ ( A ^m NN ) ~<_ ~P B ) -> ( ( cls ` J ) ` A ) ~<_ ~P B ) |
|
| 56 | 3 54 55 | syl2anc | |- ( ( ( J e. Haus /\ J e. 1stc /\ A C_ X ) /\ ( A ~<_ ~P B /\ NN ~<_ B ) ) -> ( ( cls ` J ) ` A ) ~<_ ~P B ) |