This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harmonicbnd3 | ⊢ ( 𝑁 ∈ ℕ0 → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ ( 0 [,] γ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 2 | 0re | ⊢ 0 ∈ ℝ | |
| 3 | emre | ⊢ γ ∈ ℝ | |
| 4 | 2re | ⊢ 2 ∈ ℝ | |
| 5 | ere | ⊢ e ∈ ℝ | |
| 6 | egt2lt3 | ⊢ ( 2 < e ∧ e < 3 ) | |
| 7 | 6 | simpli | ⊢ 2 < e |
| 8 | 4 5 7 | ltleii | ⊢ 2 ≤ e |
| 9 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 10 | epr | ⊢ e ∈ ℝ+ | |
| 11 | logleb | ⊢ ( ( 2 ∈ ℝ+ ∧ e ∈ ℝ+ ) → ( 2 ≤ e ↔ ( log ‘ 2 ) ≤ ( log ‘ e ) ) ) | |
| 12 | 9 10 11 | mp2an | ⊢ ( 2 ≤ e ↔ ( log ‘ 2 ) ≤ ( log ‘ e ) ) |
| 13 | 8 12 | mpbi | ⊢ ( log ‘ 2 ) ≤ ( log ‘ e ) |
| 14 | loge | ⊢ ( log ‘ e ) = 1 | |
| 15 | 13 14 | breqtri | ⊢ ( log ‘ 2 ) ≤ 1 |
| 16 | 1re | ⊢ 1 ∈ ℝ | |
| 17 | relogcl | ⊢ ( 2 ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ ) | |
| 18 | 9 17 | ax-mp | ⊢ ( log ‘ 2 ) ∈ ℝ |
| 19 | 16 18 | subge0i | ⊢ ( 0 ≤ ( 1 − ( log ‘ 2 ) ) ↔ ( log ‘ 2 ) ≤ 1 ) |
| 20 | 15 19 | mpbir | ⊢ 0 ≤ ( 1 − ( log ‘ 2 ) ) |
| 21 | 3 | leidi | ⊢ γ ≤ γ |
| 22 | iccss | ⊢ ( ( ( 0 ∈ ℝ ∧ γ ∈ ℝ ) ∧ ( 0 ≤ ( 1 − ( log ‘ 2 ) ) ∧ γ ≤ γ ) ) → ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ⊆ ( 0 [,] γ ) ) | |
| 23 | 2 3 20 21 22 | mp4an | ⊢ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ⊆ ( 0 [,] γ ) |
| 24 | harmonicbnd2 | ⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) | |
| 25 | 23 24 | sselid | ⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ ( 0 [,] γ ) ) |
| 26 | oveq2 | ⊢ ( 𝑁 = 0 → ( 1 ... 𝑁 ) = ( 1 ... 0 ) ) | |
| 27 | fz10 | ⊢ ( 1 ... 0 ) = ∅ | |
| 28 | 26 27 | eqtrdi | ⊢ ( 𝑁 = 0 → ( 1 ... 𝑁 ) = ∅ ) |
| 29 | 28 | sumeq1d | ⊢ ( 𝑁 = 0 → Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) = Σ 𝑚 ∈ ∅ ( 1 / 𝑚 ) ) |
| 30 | sum0 | ⊢ Σ 𝑚 ∈ ∅ ( 1 / 𝑚 ) = 0 | |
| 31 | 29 30 | eqtrdi | ⊢ ( 𝑁 = 0 → Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) = 0 ) |
| 32 | fv0p1e1 | ⊢ ( 𝑁 = 0 → ( log ‘ ( 𝑁 + 1 ) ) = ( log ‘ 1 ) ) | |
| 33 | log1 | ⊢ ( log ‘ 1 ) = 0 | |
| 34 | 32 33 | eqtrdi | ⊢ ( 𝑁 = 0 → ( log ‘ ( 𝑁 + 1 ) ) = 0 ) |
| 35 | 31 34 | oveq12d | ⊢ ( 𝑁 = 0 → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) = ( 0 − 0 ) ) |
| 36 | 0m0e0 | ⊢ ( 0 − 0 ) = 0 | |
| 37 | 35 36 | eqtrdi | ⊢ ( 𝑁 = 0 → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) = 0 ) |
| 38 | 2 | leidi | ⊢ 0 ≤ 0 |
| 39 | emgt0 | ⊢ 0 < γ | |
| 40 | 2 3 39 | ltleii | ⊢ 0 ≤ γ |
| 41 | 2 3 | elicc2i | ⊢ ( 0 ∈ ( 0 [,] γ ) ↔ ( 0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ γ ) ) |
| 42 | 2 38 40 41 | mpbir3an | ⊢ 0 ∈ ( 0 [,] γ ) |
| 43 | 37 42 | eqeltrdi | ⊢ ( 𝑁 = 0 → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ ( 0 [,] γ ) ) |
| 44 | 25 43 | jaoi | ⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ ( 0 [,] γ ) ) |
| 45 | 1 44 | sylbi | ⊢ ( 𝑁 ∈ ℕ0 → ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ ( 0 [,] γ ) ) |