This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Natural logarithm preserves <_ . (Contributed by Stefan O'Rear, 19-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logleb | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( log ‘ 𝐴 ) ≤ ( log ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logltb | ⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐴 ∈ ℝ+ ) → ( 𝐵 < 𝐴 ↔ ( log ‘ 𝐵 ) < ( log ‘ 𝐴 ) ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 < 𝐴 ↔ ( log ‘ 𝐵 ) < ( log ‘ 𝐴 ) ) ) |
| 3 | 2 | notbid | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( ¬ 𝐵 < 𝐴 ↔ ¬ ( log ‘ 𝐵 ) < ( log ‘ 𝐴 ) ) ) |
| 4 | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) | |
| 5 | rpre | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) | |
| 6 | lenlt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
| 8 | relogcl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) | |
| 9 | relogcl | ⊢ ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ ) | |
| 10 | lenlt | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ ( log ‘ 𝐵 ) ∈ ℝ ) → ( ( log ‘ 𝐴 ) ≤ ( log ‘ 𝐵 ) ↔ ¬ ( log ‘ 𝐵 ) < ( log ‘ 𝐴 ) ) ) | |
| 11 | 8 9 10 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) ≤ ( log ‘ 𝐵 ) ↔ ¬ ( log ‘ 𝐵 ) < ( log ‘ 𝐴 ) ) ) |
| 12 | 3 7 11 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( log ‘ 𝐴 ) ≤ ( log ‘ 𝐵 ) ) ) |