This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of a difference and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | absltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| absltd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| absltd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| Assertion | absdifled | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ 𝐶 ↔ ( ( 𝐵 − 𝐶 ) ≤ 𝐴 ∧ 𝐴 ≤ ( 𝐵 + 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | absltd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | absltd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 4 | absdifle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ 𝐶 ↔ ( ( 𝐵 − 𝐶 ) ≤ 𝐴 ∧ 𝐴 ≤ ( 𝐵 + 𝐶 ) ) ) ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ 𝐶 ↔ ( ( 𝐵 − 𝐶 ) ≤ 𝐴 ∧ 𝐴 ≤ ( 𝐵 + 𝐶 ) ) ) ) |