This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The units on ZZ [ _i ] are the gaussian integers with norm 1 . (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gzrng.1 | ⊢ 𝑍 = ( ℂfld ↾s ℤ[i] ) | |
| Assertion | gzrngunit | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) ↔ ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gzrng.1 | ⊢ 𝑍 = ( ℂfld ↾s ℤ[i] ) | |
| 2 | gzsubrg | ⊢ ℤ[i] ∈ ( SubRing ‘ ℂfld ) | |
| 3 | 1 | subrgbas | ⊢ ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) → ℤ[i] = ( Base ‘ 𝑍 ) ) |
| 4 | 2 3 | ax-mp | ⊢ ℤ[i] = ( Base ‘ 𝑍 ) |
| 5 | eqid | ⊢ ( Unit ‘ 𝑍 ) = ( Unit ‘ 𝑍 ) | |
| 6 | 4 5 | unitcl | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 𝐴 ∈ ℤ[i] ) |
| 7 | eqid | ⊢ ( invr ‘ ℂfld ) = ( invr ‘ ℂfld ) | |
| 8 | eqid | ⊢ ( invr ‘ 𝑍 ) = ( invr ‘ 𝑍 ) | |
| 9 | 1 7 5 8 | subrginv | ⊢ ( ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) ∧ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) = ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) |
| 10 | 2 9 | mpan | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) = ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) |
| 11 | gzcn | ⊢ ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ ) | |
| 12 | 6 11 | syl | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 𝐴 ∈ ℂ ) |
| 13 | 0red | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 0 ∈ ℝ ) | |
| 14 | 1re | ⊢ 1 ∈ ℝ | |
| 15 | 14 | a1i | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 1 ∈ ℝ ) |
| 16 | 12 | abscld | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 17 | 0lt1 | ⊢ 0 < 1 | |
| 18 | 17 | a1i | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 0 < 1 ) |
| 19 | 1 | gzrngunitlem | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 1 ≤ ( abs ‘ 𝐴 ) ) |
| 20 | 13 15 16 18 19 | ltletrd | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 0 < ( abs ‘ 𝐴 ) ) |
| 21 | 20 | gt0ne0d | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 22 | 12 | abs00ad | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |
| 23 | 22 | necon3bid | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( abs ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
| 24 | 21 23 | mpbid | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 𝐴 ≠ 0 ) |
| 25 | cnfldinv | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) = ( 1 / 𝐴 ) ) | |
| 26 | 12 24 25 | syl2anc | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) = ( 1 / 𝐴 ) ) |
| 27 | 10 26 | eqtr3d | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) = ( 1 / 𝐴 ) ) |
| 28 | 1 | subrgring | ⊢ ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) → 𝑍 ∈ Ring ) |
| 29 | 2 28 | ax-mp | ⊢ 𝑍 ∈ Ring |
| 30 | 5 8 | unitinvcl | ⊢ ( ( 𝑍 ∈ Ring ∧ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) → ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ∈ ( Unit ‘ 𝑍 ) ) |
| 31 | 29 30 | mpan | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ∈ ( Unit ‘ 𝑍 ) ) |
| 32 | 27 31 | eqeltrrd | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( 1 / 𝐴 ) ∈ ( Unit ‘ 𝑍 ) ) |
| 33 | 1 | gzrngunitlem | ⊢ ( ( 1 / 𝐴 ) ∈ ( Unit ‘ 𝑍 ) → 1 ≤ ( abs ‘ ( 1 / 𝐴 ) ) ) |
| 34 | 32 33 | syl | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 1 ≤ ( abs ‘ ( 1 / 𝐴 ) ) ) |
| 35 | 1cnd | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 1 ∈ ℂ ) | |
| 36 | 35 12 24 | absdivd | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( abs ‘ ( 1 / 𝐴 ) ) = ( ( abs ‘ 1 ) / ( abs ‘ 𝐴 ) ) ) |
| 37 | 34 36 | breqtrd | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 1 ≤ ( ( abs ‘ 1 ) / ( abs ‘ 𝐴 ) ) ) |
| 38 | 1div1e1 | ⊢ ( 1 / 1 ) = 1 | |
| 39 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 40 | 39 | eqcomi | ⊢ 1 = ( abs ‘ 1 ) |
| 41 | 40 | oveq1i | ⊢ ( 1 / ( abs ‘ 𝐴 ) ) = ( ( abs ‘ 1 ) / ( abs ‘ 𝐴 ) ) |
| 42 | 37 38 41 | 3brtr4g | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( 1 / 1 ) ≤ ( 1 / ( abs ‘ 𝐴 ) ) ) |
| 43 | lerec | ⊢ ( ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝐴 ) ) ∧ ( 1 ∈ ℝ ∧ 0 < 1 ) ) → ( ( abs ‘ 𝐴 ) ≤ 1 ↔ ( 1 / 1 ) ≤ ( 1 / ( abs ‘ 𝐴 ) ) ) ) | |
| 44 | 16 20 15 18 43 | syl22anc | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( abs ‘ 𝐴 ) ≤ 1 ↔ ( 1 / 1 ) ≤ ( 1 / ( abs ‘ 𝐴 ) ) ) ) |
| 45 | 42 44 | mpbird | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( abs ‘ 𝐴 ) ≤ 1 ) |
| 46 | letri3 | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) = 1 ↔ ( ( abs ‘ 𝐴 ) ≤ 1 ∧ 1 ≤ ( abs ‘ 𝐴 ) ) ) ) | |
| 47 | 16 14 46 | sylancl | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( abs ‘ 𝐴 ) = 1 ↔ ( ( abs ‘ 𝐴 ) ≤ 1 ∧ 1 ≤ ( abs ‘ 𝐴 ) ) ) ) |
| 48 | 45 19 47 | mpbir2and | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( abs ‘ 𝐴 ) = 1 ) |
| 49 | 6 48 | jca | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) ) |
| 50 | 11 | adantr | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ℂ ) |
| 51 | simpr | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( abs ‘ 𝐴 ) = 1 ) | |
| 52 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 53 | 52 | a1i | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → 1 ≠ 0 ) |
| 54 | 51 53 | eqnetrd | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 55 | fveq2 | ⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = ( abs ‘ 0 ) ) | |
| 56 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 57 | 55 56 | eqtrdi | ⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = 0 ) |
| 58 | 57 | necon3i | ⊢ ( ( abs ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ 0 ) |
| 59 | 54 58 | syl | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ≠ 0 ) |
| 60 | eldifsn | ⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) | |
| 61 | 50 59 60 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ( ℂ ∖ { 0 } ) ) |
| 62 | simpl | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ℤ[i] ) | |
| 63 | 50 59 25 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) = ( 1 / 𝐴 ) ) |
| 64 | 50 | absvalsqd | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 65 | 51 | oveq1d | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 66 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 67 | 65 66 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = 1 ) |
| 68 | 64 67 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = 1 ) |
| 69 | 68 | oveq1d | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) / 𝐴 ) = ( 1 / 𝐴 ) ) |
| 70 | 50 | cjcld | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 71 | 70 50 59 | divcan3d | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) / 𝐴 ) = ( ∗ ‘ 𝐴 ) ) |
| 72 | 63 69 71 | 3eqtr2d | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) = ( ∗ ‘ 𝐴 ) ) |
| 73 | gzcjcl | ⊢ ( 𝐴 ∈ ℤ[i] → ( ∗ ‘ 𝐴 ) ∈ ℤ[i] ) | |
| 74 | 73 | adantr | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ∗ ‘ 𝐴 ) ∈ ℤ[i] ) |
| 75 | 72 74 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) ∈ ℤ[i] ) |
| 76 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 77 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 78 | cndrng | ⊢ ℂfld ∈ DivRing | |
| 79 | 76 77 78 | drngui | ⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
| 80 | 1 79 5 7 | subrgunit | ⊢ ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) → ( 𝐴 ∈ ( Unit ‘ 𝑍 ) ↔ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐴 ∈ ℤ[i] ∧ ( ( invr ‘ ℂfld ) ‘ 𝐴 ) ∈ ℤ[i] ) ) ) |
| 81 | 2 80 | ax-mp | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) ↔ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐴 ∈ ℤ[i] ∧ ( ( invr ‘ ℂfld ) ‘ 𝐴 ) ∈ ℤ[i] ) ) |
| 82 | 61 62 75 81 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ( Unit ‘ 𝑍 ) ) |
| 83 | 49 82 | impbii | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) ↔ ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) ) |