This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgugrp.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| subrgugrp.2 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| subrgugrp.3 | ⊢ 𝑉 = ( Unit ‘ 𝑆 ) | ||
| subrgunit.4 | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
| Assertion | subrgunit | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑋 ∈ 𝑉 ↔ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgugrp.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| 2 | subrgugrp.2 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | subrgugrp.3 | ⊢ 𝑉 = ( Unit ‘ 𝑆 ) | |
| 4 | subrgunit.4 | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 5 | 1 2 3 | subrguss | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑉 ⊆ 𝑈 ) |
| 6 | 5 | sselda | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑈 ) |
| 7 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 8 | 7 3 | unitcl | ⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 10 | 1 | subrgbas | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑉 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 12 | 9 11 | eleqtrrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝐴 ) |
| 13 | 1 | subrgring | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| 14 | eqid | ⊢ ( invr ‘ 𝑆 ) = ( invr ‘ 𝑆 ) | |
| 15 | 3 14 7 | ringinvcl | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑋 ∈ 𝑉 ) → ( ( invr ‘ 𝑆 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
| 16 | 13 15 | sylan | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( invr ‘ 𝑆 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
| 17 | 1 4 3 14 | subrginv | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐼 ‘ 𝑋 ) = ( ( invr ‘ 𝑆 ) ‘ 𝑋 ) ) |
| 18 | 16 17 11 | 3eltr4d | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) |
| 19 | 6 12 18 | 3jca | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) |
| 20 | simpr2 | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝑋 ∈ 𝐴 ) | |
| 21 | 10 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 22 | 20 21 | eleqtrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 23 | simpr3 | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) | |
| 24 | 23 21 | eleqtrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
| 25 | eqid | ⊢ ( ∥r ‘ 𝑆 ) = ( ∥r ‘ 𝑆 ) | |
| 26 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 27 | 7 25 26 | dvdsrmul | ⊢ ( ( 𝑋 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) → 𝑋 ( ∥r ‘ 𝑆 ) ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑋 ) ) |
| 28 | 22 24 27 | syl2anc | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝑋 ( ∥r ‘ 𝑆 ) ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑋 ) ) |
| 29 | subrgrcl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) | |
| 30 | 29 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝑅 ∈ Ring ) |
| 31 | simpr1 | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝑋 ∈ 𝑈 ) | |
| 32 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 33 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 34 | 2 4 32 33 | unitlinv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 35 | 30 31 34 | syl2anc | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 36 | 1 32 | ressmulr | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 37 | 36 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 38 | 37 | oveqd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) = ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑋 ) ) |
| 39 | 1 33 | subrg1 | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 40 | 39 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 41 | 35 38 40 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑋 ) = ( 1r ‘ 𝑆 ) ) |
| 42 | 28 41 | breqtrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝑋 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) |
| 43 | eqid | ⊢ ( oppr ‘ 𝑆 ) = ( oppr ‘ 𝑆 ) | |
| 44 | 43 7 | opprbas | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ ( oppr ‘ 𝑆 ) ) |
| 45 | eqid | ⊢ ( ∥r ‘ ( oppr ‘ 𝑆 ) ) = ( ∥r ‘ ( oppr ‘ 𝑆 ) ) | |
| 46 | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝑆 ) ) = ( .r ‘ ( oppr ‘ 𝑆 ) ) | |
| 47 | 44 45 46 | dvdsrmul | ⊢ ( ( 𝑋 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) → 𝑋 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑋 ) ) |
| 48 | 22 24 47 | syl2anc | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝑋 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑋 ) ) |
| 49 | 7 26 43 46 | opprmul | ⊢ ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑋 ) = ( 𝑋 ( .r ‘ 𝑆 ) ( 𝐼 ‘ 𝑋 ) ) |
| 50 | 2 4 32 33 | unitrinv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝑅 ) ) |
| 51 | 30 31 50 | syl2anc | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝑅 ) ) |
| 52 | 37 | oveqd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝑋 ( .r ‘ 𝑆 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 53 | 51 52 40 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( 𝑋 ( .r ‘ 𝑆 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝑆 ) ) |
| 54 | 49 53 | eqtrid | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑋 ) = ( 1r ‘ 𝑆 ) ) |
| 55 | 48 54 | breqtrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝑋 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑆 ) ) |
| 56 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 57 | 3 56 25 43 45 | isunit | ⊢ ( 𝑋 ∈ 𝑉 ↔ ( 𝑋 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑆 ) ) ) |
| 58 | 42 55 57 | sylanbrc | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝑋 ∈ 𝑉 ) |
| 59 | 19 58 | impbida | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑋 ∈ 𝑉 ↔ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) ) |