This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate a group sum on CCfld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumfsum.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| gsumfsum.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| Assertion | gsumfsum | ⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumfsum.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | gsumfsum.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | mpteq1 | ⊢ ( 𝐴 = ∅ → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ ∅ ↦ 𝐵 ) ) | |
| 4 | mpt0 | ⊢ ( 𝑘 ∈ ∅ ↦ 𝐵 ) = ∅ | |
| 5 | 3 4 | eqtrdi | ⊢ ( 𝐴 = ∅ → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ∅ ) |
| 6 | 5 | oveq2d | ⊢ ( 𝐴 = ∅ → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( ℂfld Σg ∅ ) ) |
| 7 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 8 | 7 | gsum0 | ⊢ ( ℂfld Σg ∅ ) = 0 |
| 9 | sum0 | ⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 | |
| 10 | 8 9 | eqtr4i | ⊢ ( ℂfld Σg ∅ ) = Σ 𝑘 ∈ ∅ 𝐵 |
| 11 | 6 10 | eqtrdi | ⊢ ( 𝐴 = ∅ → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ ∅ 𝐵 ) |
| 12 | sumeq1 | ⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) | |
| 13 | 11 12 | eqtr4d | ⊢ ( 𝐴 = ∅ → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 14 | 13 | a1i | ⊢ ( 𝜑 → ( 𝐴 = ∅ → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 15 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 16 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 17 | eqid | ⊢ ( Cntz ‘ ℂfld ) = ( Cntz ‘ ℂfld ) | |
| 18 | cnring | ⊢ ℂfld ∈ Ring | |
| 19 | ringmnd | ⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) | |
| 20 | 18 19 | mp1i | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ℂfld ∈ Mnd ) |
| 21 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝐴 ∈ Fin ) |
| 22 | 2 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 24 | ringcmn | ⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) | |
| 25 | 18 24 | mp1i | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ℂfld ∈ CMnd ) |
| 26 | 15 17 25 23 | cntzcmnf | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⊆ ( ( Cntz ‘ ℂfld ) ‘ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 27 | simprl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) | |
| 28 | simprr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) | |
| 29 | f1of1 | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1→ 𝐴 ) | |
| 30 | 28 29 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1→ 𝐴 ) |
| 31 | suppssdm | ⊢ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 0 ) ⊆ dom ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) | |
| 32 | 31 23 | fssdm | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 0 ) ⊆ 𝐴 ) |
| 33 | f1ofo | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –onto→ 𝐴 ) | |
| 34 | forn | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –onto→ 𝐴 → ran 𝑓 = 𝐴 ) | |
| 35 | 28 33 34 | 3syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ran 𝑓 = 𝐴 ) |
| 36 | 32 35 | sseqtrrd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 0 ) ⊆ ran 𝑓 ) |
| 37 | eqid | ⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) supp 0 ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) supp 0 ) | |
| 38 | 15 7 16 17 20 21 23 26 27 30 36 37 | gsumval3 | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 39 | sumfc | ⊢ Σ 𝑥 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = Σ 𝑘 ∈ 𝐴 𝐵 | |
| 40 | fveq2 | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 41 | 23 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ℂ ) |
| 42 | f1of | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) | |
| 43 | 28 42 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 44 | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 45 | 43 44 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 46 | 40 27 28 41 45 | fsum | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑥 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 47 | 39 46 | eqtr3id | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑘 ∈ 𝐴 𝐵 = ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 48 | 38 47 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 49 | 48 | expr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 50 | 49 | exlimdv | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 51 | 50 | expimpd | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 52 | fz1f1o | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) | |
| 53 | 1 52 | syl | ⊢ ( 𝜑 → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
| 54 | 14 51 53 | mpjaod | ⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |