This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrginv.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| subrginv.2 | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
| subrginv.3 | ⊢ 𝑈 = ( Unit ‘ 𝑆 ) | ||
| subrginv.4 | ⊢ 𝐽 = ( invr ‘ 𝑆 ) | ||
| Assertion | subrginv | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑋 ) = ( 𝐽 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrginv.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| 2 | subrginv.2 | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 3 | subrginv.3 | ⊢ 𝑈 = ( Unit ‘ 𝑆 ) | |
| 4 | subrginv.4 | ⊢ 𝐽 = ( invr ‘ 𝑆 ) | |
| 5 | subrgrcl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → 𝑅 ∈ Ring ) |
| 7 | 1 | subrgbas | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 8 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 9 | 8 | subrgss | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 10 | 7 9 | eqsstrrd | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 12 | 1 | subrgring | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| 13 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 14 | 3 4 13 | ringinvcl | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
| 15 | 12 14 | sylan | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
| 16 | 11 15 | sseldd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
| 17 | 13 3 | unitcl | ⊢ ( 𝑋 ∈ 𝑈 → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 18 | 17 | adantl | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 19 | 11 18 | sseldd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 20 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 21 | 1 20 3 | subrguss | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑈 ⊆ ( Unit ‘ 𝑅 ) ) |
| 22 | 21 | sselda | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ ( Unit ‘ 𝑅 ) ) |
| 23 | 20 2 8 | ringinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
| 24 | 5 22 23 | syl2an2r | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
| 25 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 26 | 8 25 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 27 | 6 16 19 24 26 | syl13anc | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 28 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 29 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 30 | 3 4 28 29 | unitlinv | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑋 ) = ( 1r ‘ 𝑆 ) ) |
| 31 | 12 30 | sylan | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑋 ) = ( 1r ‘ 𝑆 ) ) |
| 32 | 1 25 | ressmulr | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 34 | 33 | oveqd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) = ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑋 ) ) |
| 35 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 36 | 1 35 | subrg1 | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 37 | 36 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 38 | 31 34 37 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 39 | 38 | oveq1d | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 40 | 20 2 25 35 | unitrinv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝑅 ) ) |
| 41 | 5 22 40 | syl2an2r | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝑅 ) ) |
| 42 | 41 | oveq2d | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) = ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 43 | 27 39 42 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 44 | 8 25 35 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 45 | 5 24 44 | syl2an2r | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 46 | 8 25 35 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝐽 ‘ 𝑋 ) ) |
| 47 | 5 16 46 | syl2an2r | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝐽 ‘ 𝑋 ) ) |
| 48 | 43 45 47 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑋 ) = ( 𝐽 ‘ 𝑋 ) ) |