This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex numbers form a division ring. (Contributed by Stefan O'Rear, 27-Nov-2014) Avoid ax-mulf . (Revised by GG, 30-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cndrng | ⊢ ℂfld ∈ DivRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 2 | 1 | a1i | ⊢ ( ⊤ → ℂ = ( Base ‘ ℂfld ) ) |
| 3 | mpocnfldmul | ⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) = ( .r ‘ ℂfld ) | |
| 4 | 3 | a1i | ⊢ ( ⊤ → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) = ( .r ‘ ℂfld ) ) |
| 5 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 6 | 5 | a1i | ⊢ ( ⊤ → 0 = ( 0g ‘ ℂfld ) ) |
| 7 | cnfld1 | ⊢ 1 = ( 1r ‘ ℂfld ) | |
| 8 | 7 | a1i | ⊢ ( ⊤ → 1 = ( 1r ‘ ℂfld ) ) |
| 9 | cnring | ⊢ ℂfld ∈ Ring | |
| 10 | 9 | a1i | ⊢ ( ⊤ → ℂfld ∈ Ring ) |
| 11 | ovmpot | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) | |
| 12 | 11 | ad2ant2r | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
| 13 | mulne0 | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) | |
| 14 | 12 13 | eqnetrd | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ≠ 0 ) |
| 15 | 14 | 3adant1 | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ≠ 0 ) |
| 16 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 17 | 16 | a1i | ⊢ ( ⊤ → 1 ≠ 0 ) |
| 18 | reccl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ ℂ ) | |
| 19 | 18 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( 1 / 𝑥 ) ∈ ℂ ) |
| 20 | simpl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ ℂ ) | |
| 21 | ovmpot | ⊢ ( ( ( 1 / 𝑥 ) ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 1 / 𝑥 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = ( ( 1 / 𝑥 ) · 𝑥 ) ) | |
| 22 | 18 20 21 | syl2anc | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( ( 1 / 𝑥 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = ( ( 1 / 𝑥 ) · 𝑥 ) ) |
| 23 | recid2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( ( 1 / 𝑥 ) · 𝑥 ) = 1 ) | |
| 24 | 22 23 | eqtrd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( ( 1 / 𝑥 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = 1 ) |
| 25 | 24 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( 1 / 𝑥 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = 1 ) |
| 26 | 2 4 6 8 10 15 17 19 25 | isdrngd | ⊢ ( ⊤ → ℂfld ∈ DivRing ) |
| 27 | 26 | mptru | ⊢ ℂfld ∈ DivRing |