This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The gaussian integers are closed under conjugation. (Contributed by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gzcjcl | ⊢ ( 𝐴 ∈ ℤ[i] → ( ∗ ‘ 𝐴 ) ∈ ℤ[i] ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gzcn | ⊢ ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ ) | |
| 2 | 1 | cjcld | ⊢ ( 𝐴 ∈ ℤ[i] → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 3 | 1 | recjd | ⊢ ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ ( ∗ ‘ 𝐴 ) ) = ( ℜ ‘ 𝐴 ) ) |
| 4 | elgz | ⊢ ( 𝐴 ∈ ℤ[i] ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) | |
| 5 | 4 | simp2bi | ⊢ ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ 𝐴 ) ∈ ℤ ) |
| 6 | 3 5 | eqeltrd | ⊢ ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ ( ∗ ‘ 𝐴 ) ) ∈ ℤ ) |
| 7 | 1 | imcjd | ⊢ ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) |
| 8 | 4 | simp3bi | ⊢ ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ 𝐴 ) ∈ ℤ ) |
| 9 | 8 | znegcld | ⊢ ( 𝐴 ∈ ℤ[i] → - ( ℑ ‘ 𝐴 ) ∈ ℤ ) |
| 10 | 7 9 | eqeltrd | ⊢ ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) ∈ ℤ ) |
| 11 | elgz | ⊢ ( ( ∗ ‘ 𝐴 ) ∈ ℤ[i] ↔ ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( ℜ ‘ ( ∗ ‘ 𝐴 ) ) ∈ ℤ ∧ ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) ∈ ℤ ) ) | |
| 12 | 2 6 10 11 | syl3anbrc | ⊢ ( 𝐴 ∈ ℤ[i] → ( ∗ ‘ 𝐴 ) ∈ ℤ[i] ) |