This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplicative inverse in the field of complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldinv | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) = ( 1 / 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | ⊢ ( 𝑋 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) ) | |
| 2 | cnring | ⊢ ℂfld ∈ Ring | |
| 3 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 4 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 5 | cndrng | ⊢ ℂfld ∈ DivRing | |
| 6 | 3 4 5 | drngui | ⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
| 7 | cnflddiv | ⊢ / = ( /r ‘ ℂfld ) | |
| 8 | cnfld1 | ⊢ 1 = ( 1r ‘ ℂfld ) | |
| 9 | eqid | ⊢ ( invr ‘ ℂfld ) = ( invr ‘ ℂfld ) | |
| 10 | 3 6 7 8 9 | ringinvdv | ⊢ ( ( ℂfld ∈ Ring ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) = ( 1 / 𝑋 ) ) |
| 11 | 2 10 | mpan | ⊢ ( 𝑋 ∈ ( ℂ ∖ { 0 } ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) = ( 1 / 𝑋 ) ) |
| 12 | 1 11 | sylbir | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) = ( 1 / 𝑋 ) ) |