This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gzrngunit . (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gzrng.1 | ⊢ 𝑍 = ( ℂfld ↾s ℤ[i] ) | |
| Assertion | gzrngunitlem | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 1 ≤ ( abs ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gzrng.1 | ⊢ 𝑍 = ( ℂfld ↾s ℤ[i] ) | |
| 2 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 3 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 4 | gzsubrg | ⊢ ℤ[i] ∈ ( SubRing ‘ ℂfld ) | |
| 5 | 1 | subrgring | ⊢ ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) → 𝑍 ∈ Ring ) |
| 6 | eqid | ⊢ ( Unit ‘ 𝑍 ) = ( Unit ‘ 𝑍 ) | |
| 7 | subrgsubg | ⊢ ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) → ℤ[i] ∈ ( SubGrp ‘ ℂfld ) ) | |
| 8 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 9 | 1 8 | subg0 | ⊢ ( ℤ[i] ∈ ( SubGrp ‘ ℂfld ) → 0 = ( 0g ‘ 𝑍 ) ) |
| 10 | 4 7 9 | mp2b | ⊢ 0 = ( 0g ‘ 𝑍 ) |
| 11 | cnfld1 | ⊢ 1 = ( 1r ‘ ℂfld ) | |
| 12 | 1 11 | subrg1 | ⊢ ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) → 1 = ( 1r ‘ 𝑍 ) ) |
| 13 | 4 12 | ax-mp | ⊢ 1 = ( 1r ‘ 𝑍 ) |
| 14 | 6 10 13 | 0unit | ⊢ ( 𝑍 ∈ Ring → ( 0 ∈ ( Unit ‘ 𝑍 ) ↔ 1 = 0 ) ) |
| 15 | 4 5 14 | mp2b | ⊢ ( 0 ∈ ( Unit ‘ 𝑍 ) ↔ 1 = 0 ) |
| 16 | 3 15 | nemtbir | ⊢ ¬ 0 ∈ ( Unit ‘ 𝑍 ) |
| 17 | 1 | subrgbas | ⊢ ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) → ℤ[i] = ( Base ‘ 𝑍 ) ) |
| 18 | 4 17 | ax-mp | ⊢ ℤ[i] = ( Base ‘ 𝑍 ) |
| 19 | 18 6 | unitcl | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 𝐴 ∈ ℤ[i] ) |
| 20 | gzabssqcl | ⊢ ( 𝐴 ∈ ℤ[i] → ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ0 ) | |
| 21 | 19 20 | syl | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ0 ) |
| 22 | elnn0 | ⊢ ( ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ0 ↔ ( ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ ∨ ( ( abs ‘ 𝐴 ) ↑ 2 ) = 0 ) ) | |
| 23 | 21 22 | sylib | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ ∨ ( ( abs ‘ 𝐴 ) ↑ 2 ) = 0 ) ) |
| 24 | 23 | ord | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ¬ ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = 0 ) ) |
| 25 | gzcn | ⊢ ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ ) | |
| 26 | 19 25 | syl | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 𝐴 ∈ ℂ ) |
| 27 | 26 | abscld | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 28 | 27 | recnd | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 29 | sqeq0 | ⊢ ( ( abs ‘ 𝐴 ) ∈ ℂ → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) = 0 ↔ ( abs ‘ 𝐴 ) = 0 ) ) | |
| 30 | 28 29 | syl | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) = 0 ↔ ( abs ‘ 𝐴 ) = 0 ) ) |
| 31 | 26 | abs00ad | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |
| 32 | eleq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 ∈ ( Unit ‘ 𝑍 ) ↔ 0 ∈ ( Unit ‘ 𝑍 ) ) ) | |
| 33 | 32 | biimpcd | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( 𝐴 = 0 → 0 ∈ ( Unit ‘ 𝑍 ) ) ) |
| 34 | 31 33 | sylbid | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( abs ‘ 𝐴 ) = 0 → 0 ∈ ( Unit ‘ 𝑍 ) ) ) |
| 35 | 30 34 | sylbid | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) = 0 → 0 ∈ ( Unit ‘ 𝑍 ) ) ) |
| 36 | 24 35 | syld | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ¬ ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ → 0 ∈ ( Unit ‘ 𝑍 ) ) ) |
| 37 | 16 36 | mt3i | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ ) |
| 38 | 37 | nnge1d | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 1 ≤ ( ( abs ‘ 𝐴 ) ↑ 2 ) ) |
| 39 | 2 38 | eqbrtrid | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( 1 ↑ 2 ) ≤ ( ( abs ‘ 𝐴 ) ↑ 2 ) ) |
| 40 | 26 | absge0d | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 41 | 1re | ⊢ 1 ∈ ℝ | |
| 42 | 0le1 | ⊢ 0 ≤ 1 | |
| 43 | le2sq | ⊢ ( ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) → ( 1 ≤ ( abs ‘ 𝐴 ) ↔ ( 1 ↑ 2 ) ≤ ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) | |
| 44 | 41 42 43 | mpanl12 | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → ( 1 ≤ ( abs ‘ 𝐴 ) ↔ ( 1 ↑ 2 ) ≤ ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) |
| 45 | 27 40 44 | syl2anc | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( 1 ≤ ( abs ‘ 𝐴 ) ↔ ( 1 ↑ 2 ) ≤ ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) |
| 46 | 39 45 | mpbird | ⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 1 ≤ ( abs ‘ 𝐴 ) ) |