This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group sum as defined in gsumval3a is uniquely defined. (Contributed by Mario Carneiro, 8-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumval3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumval3.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumval3.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumval3.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| gsumval3.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsumval3.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumval3.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsumval3.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | ||
| gsumval3a.t | ⊢ ( 𝜑 → 𝑊 ∈ Fin ) | ||
| gsumval3a.n | ⊢ ( 𝜑 → 𝑊 ≠ ∅ ) | ||
| gsumval3a.s | ⊢ ( 𝜑 → 𝑊 ⊆ 𝐴 ) | ||
| Assertion | gsumval3eu | ⊢ ( 𝜑 → ∃! 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumval3.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumval3.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | gsumval3.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 5 | gsumval3.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 6 | gsumval3.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 7 | gsumval3.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 8 | gsumval3.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | |
| 9 | gsumval3a.t | ⊢ ( 𝜑 → 𝑊 ∈ Fin ) | |
| 10 | gsumval3a.n | ⊢ ( 𝜑 → 𝑊 ≠ ∅ ) | |
| 11 | gsumval3a.s | ⊢ ( 𝜑 → 𝑊 ⊆ 𝐴 ) | |
| 12 | 10 | neneqd | ⊢ ( 𝜑 → ¬ 𝑊 = ∅ ) |
| 13 | fz1f1o | ⊢ ( 𝑊 ∈ Fin → ( 𝑊 = ∅ ∨ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ) | |
| 14 | 9 13 | syl | ⊢ ( 𝜑 → ( 𝑊 = ∅ ∨ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ) |
| 15 | 14 | ord | ⊢ ( 𝜑 → ( ¬ 𝑊 = ∅ → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ) |
| 16 | 12 15 | mpd | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) |
| 17 | 16 | simprd | ⊢ ( 𝜑 → ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) |
| 18 | excom | ⊢ ( ∃ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ∃ 𝑓 ∃ 𝑥 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) | |
| 19 | exancom | ⊢ ( ∃ 𝑥 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ∃ 𝑥 ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) | |
| 20 | fvex | ⊢ ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ∈ V | |
| 21 | biidd | ⊢ ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) | |
| 22 | 20 21 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) |
| 23 | 19 22 | bitri | ⊢ ( ∃ 𝑥 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) |
| 24 | 23 | exbii | ⊢ ( ∃ 𝑓 ∃ 𝑥 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) |
| 25 | 18 24 | bitri | ⊢ ( ∃ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) |
| 26 | 17 25 | sylibr | ⊢ ( 𝜑 → ∃ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
| 27 | exdistrv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ↔ ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) | |
| 28 | an4 | ⊢ ( ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ∧ ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ↔ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) | |
| 29 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝐺 ∈ Mnd ) |
| 30 | 1 3 | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 31 | 30 | 3expb | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 32 | 29 31 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 33 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 34 | 33 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ ran 𝐹 ) → 𝑥 ∈ ( 𝑍 ‘ ran 𝐹 ) ) |
| 35 | 34 | adantrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹 ) ) → 𝑥 ∈ ( 𝑍 ‘ ran 𝐹 ) ) |
| 36 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹 ) ) → 𝑦 ∈ ran 𝐹 ) | |
| 37 | 3 4 | cntzi | ⊢ ( ( 𝑥 ∈ ( 𝑍 ‘ ran 𝐹 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 38 | 35 36 37 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 39 | 1 3 | mndass | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 40 | 29 39 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 41 | 16 | simpld | ⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 42 | 41 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 43 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 44 | 42 43 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 45 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 46 | 45 | frnd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ran 𝐹 ⊆ 𝐵 ) |
| 47 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) | |
| 48 | f1ocnv | ⊢ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 → ◡ 𝑔 : 𝑊 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 49 | 47 48 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ◡ 𝑔 : 𝑊 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 50 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) | |
| 51 | f1oco | ⊢ ( ( ◡ 𝑔 : 𝑊 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) → ( ◡ 𝑔 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 52 | 49 50 51 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( ◡ 𝑔 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 53 | f1of | ⊢ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 → 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ) | |
| 54 | 47 53 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ) |
| 55 | fvco3 | ⊢ ( ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑔 ‘ 𝑥 ) ) ) | |
| 56 | 54 55 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑔 ‘ 𝑥 ) ) ) |
| 57 | 45 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝐹 Fn 𝐴 ) |
| 58 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝑊 ⊆ 𝐴 ) |
| 59 | 54 58 | fssd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
| 60 | 59 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝐴 ) |
| 61 | fnfvelrn | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ ran 𝐹 ) | |
| 62 | 57 60 61 | syl2an2r | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ ran 𝐹 ) |
| 63 | 56 62 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑥 ) ∈ ran 𝐹 ) |
| 64 | f1of | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ) | |
| 65 | 50 64 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ) |
| 66 | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) = ( ◡ 𝑔 ‘ ( 𝑓 ‘ 𝑘 ) ) ) | |
| 67 | 65 66 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) = ( ◡ 𝑔 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 68 | 67 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑔 ‘ ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ) = ( 𝑔 ‘ ( ◡ 𝑔 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 69 | 65 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝑊 ) |
| 70 | f1ocnvfv2 | ⊢ ( ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ ( 𝑓 ‘ 𝑘 ) ∈ 𝑊 ) → ( 𝑔 ‘ ( ◡ 𝑔 ‘ ( 𝑓 ‘ 𝑘 ) ) ) = ( 𝑓 ‘ 𝑘 ) ) | |
| 71 | 47 69 70 | syl2an2r | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑔 ‘ ( ◡ 𝑔 ‘ ( 𝑓 ‘ 𝑘 ) ) ) = ( 𝑓 ‘ 𝑘 ) ) |
| 72 | 68 71 | eqtr2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑔 ‘ ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ) ) |
| 73 | 72 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝑔 ‘ ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ) ) ) |
| 74 | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) | |
| 75 | 65 74 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 76 | f1of | ⊢ ( ( ◡ 𝑔 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ◡ 𝑔 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 77 | 52 76 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( ◡ 𝑔 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 78 | 77 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 79 | fvco3 | ⊢ ( ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ∧ ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑔 ) ‘ ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝑔 ‘ ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ) ) ) | |
| 80 | 59 78 79 | syl2an2r | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑔 ) ‘ ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝑔 ‘ ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ) ) ) |
| 81 | 73 75 80 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) = ( ( 𝐹 ∘ 𝑔 ) ‘ ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ) ) |
| 82 | 32 38 40 44 46 52 63 81 | seqf1o | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) |
| 83 | eqeq12 | ⊢ ( ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑥 = 𝑦 ↔ ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) | |
| 84 | 82 83 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) → 𝑥 = 𝑦 ) ) |
| 85 | 84 | expimpd | ⊢ ( 𝜑 → ( ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ∧ ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) → 𝑥 = 𝑦 ) ) |
| 86 | 28 85 | biimtrrid | ⊢ ( 𝜑 → ( ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) → 𝑥 = 𝑦 ) ) |
| 87 | 86 | exlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) → 𝑥 = 𝑦 ) ) |
| 88 | 27 87 | biimtrrid | ⊢ ( 𝜑 → ( ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) → 𝑥 = 𝑦 ) ) |
| 89 | 88 | alrimivv | ⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 ( ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) → 𝑥 = 𝑦 ) ) |
| 90 | eqeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ↔ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) | |
| 91 | 90 | anbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 92 | 91 | exbidv | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 93 | f1oeq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ↔ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) | |
| 94 | coeq2 | ⊢ ( 𝑓 = 𝑔 → ( 𝐹 ∘ 𝑓 ) = ( 𝐹 ∘ 𝑔 ) ) | |
| 95 | 94 | seqeq3d | ⊢ ( 𝑓 = 𝑔 → seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) = seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ) |
| 96 | 95 | fveq1d | ⊢ ( 𝑓 = 𝑔 → ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) |
| 97 | 96 | eqeq2d | ⊢ ( 𝑓 = 𝑔 → ( 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ↔ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
| 98 | 93 97 | anbi12d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 99 | 98 | cbvexvw | ⊢ ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
| 100 | 92 99 | bitrdi | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 101 | 100 | eu4 | ⊢ ( ∃! 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ( ∃ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ∧ ∀ 𝑥 ∀ 𝑦 ( ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) → 𝑥 = 𝑦 ) ) ) |
| 102 | 26 89 101 | sylanbrc | ⊢ ( 𝜑 → ∃! 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |