This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group sum as defined in gsumval3a is uniquely defined. (Contributed by Mario Carneiro, 8-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumval3.b | |- B = ( Base ` G ) |
|
| gsumval3.0 | |- .0. = ( 0g ` G ) |
||
| gsumval3.p | |- .+ = ( +g ` G ) |
||
| gsumval3.z | |- Z = ( Cntz ` G ) |
||
| gsumval3.g | |- ( ph -> G e. Mnd ) |
||
| gsumval3.a | |- ( ph -> A e. V ) |
||
| gsumval3.f | |- ( ph -> F : A --> B ) |
||
| gsumval3.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
||
| gsumval3a.t | |- ( ph -> W e. Fin ) |
||
| gsumval3a.n | |- ( ph -> W =/= (/) ) |
||
| gsumval3a.s | |- ( ph -> W C_ A ) |
||
| Assertion | gsumval3eu | |- ( ph -> E! x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval3.b | |- B = ( Base ` G ) |
|
| 2 | gsumval3.0 | |- .0. = ( 0g ` G ) |
|
| 3 | gsumval3.p | |- .+ = ( +g ` G ) |
|
| 4 | gsumval3.z | |- Z = ( Cntz ` G ) |
|
| 5 | gsumval3.g | |- ( ph -> G e. Mnd ) |
|
| 6 | gsumval3.a | |- ( ph -> A e. V ) |
|
| 7 | gsumval3.f | |- ( ph -> F : A --> B ) |
|
| 8 | gsumval3.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
|
| 9 | gsumval3a.t | |- ( ph -> W e. Fin ) |
|
| 10 | gsumval3a.n | |- ( ph -> W =/= (/) ) |
|
| 11 | gsumval3a.s | |- ( ph -> W C_ A ) |
|
| 12 | 10 | neneqd | |- ( ph -> -. W = (/) ) |
| 13 | fz1f1o | |- ( W e. Fin -> ( W = (/) \/ ( ( # ` W ) e. NN /\ E. f f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) ) |
|
| 14 | 9 13 | syl | |- ( ph -> ( W = (/) \/ ( ( # ` W ) e. NN /\ E. f f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) ) |
| 15 | 14 | ord | |- ( ph -> ( -. W = (/) -> ( ( # ` W ) e. NN /\ E. f f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) ) |
| 16 | 12 15 | mpd | |- ( ph -> ( ( # ` W ) e. NN /\ E. f f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) |
| 17 | 16 | simprd | |- ( ph -> E. f f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) |
| 18 | excom | |- ( E. x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) <-> E. f E. x ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) |
|
| 19 | exancom | |- ( E. x ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) <-> E. x ( x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) |
|
| 20 | fvex | |- ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) e. _V |
|
| 21 | biidd | |- ( x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) -> ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W <-> f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) |
|
| 22 | 20 21 | ceqsexv | |- ( E. x ( x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) <-> f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) |
| 23 | 19 22 | bitri | |- ( E. x ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) <-> f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) |
| 24 | 23 | exbii | |- ( E. f E. x ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) <-> E. f f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) |
| 25 | 18 24 | bitri | |- ( E. x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) <-> E. f f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) |
| 26 | 17 25 | sylibr | |- ( ph -> E. x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) |
| 27 | exdistrv | |- ( E. f E. g ( ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) /\ ( g : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ y = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) ) <-> ( E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) /\ E. g ( g : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ y = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) ) ) |
|
| 28 | an4 | |- ( ( ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) /\ ( x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) /\ y = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) ) <-> ( ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) /\ ( g : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ y = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) ) ) |
|
| 29 | 5 | adantr | |- ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> G e. Mnd ) |
| 30 | 1 3 | mndcl | |- ( ( G e. Mnd /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
| 31 | 30 | 3expb | |- ( ( G e. Mnd /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
| 32 | 29 31 | sylan | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
| 33 | 8 | adantr | |- ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ran F C_ ( Z ` ran F ) ) |
| 34 | 33 | sselda | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ x e. ran F ) -> x e. ( Z ` ran F ) ) |
| 35 | 34 | adantrr | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ ( x e. ran F /\ y e. ran F ) ) -> x e. ( Z ` ran F ) ) |
| 36 | simprr | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ ( x e. ran F /\ y e. ran F ) ) -> y e. ran F ) |
|
| 37 | 3 4 | cntzi | |- ( ( x e. ( Z ` ran F ) /\ y e. ran F ) -> ( x .+ y ) = ( y .+ x ) ) |
| 38 | 35 36 37 | syl2anc | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ ( x e. ran F /\ y e. ran F ) ) -> ( x .+ y ) = ( y .+ x ) ) |
| 39 | 1 3 | mndass | |- ( ( G e. Mnd /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 40 | 29 39 | sylan | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 41 | 16 | simpld | |- ( ph -> ( # ` W ) e. NN ) |
| 42 | 41 | adantr | |- ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( # ` W ) e. NN ) |
| 43 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 44 | 42 43 | eleqtrdi | |- ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( # ` W ) e. ( ZZ>= ` 1 ) ) |
| 45 | 7 | adantr | |- ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> F : A --> B ) |
| 46 | 45 | frnd | |- ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ran F C_ B ) |
| 47 | simprr | |- ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) |
|
| 48 | f1ocnv | |- ( g : ( 1 ... ( # ` W ) ) -1-1-onto-> W -> `' g : W -1-1-onto-> ( 1 ... ( # ` W ) ) ) |
|
| 49 | 47 48 | syl | |- ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> `' g : W -1-1-onto-> ( 1 ... ( # ` W ) ) ) |
| 50 | simprl | |- ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) |
|
| 51 | f1oco | |- ( ( `' g : W -1-1-onto-> ( 1 ... ( # ` W ) ) /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) -> ( `' g o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( 1 ... ( # ` W ) ) ) |
|
| 52 | 49 50 51 | syl2anc | |- ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( `' g o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( 1 ... ( # ` W ) ) ) |
| 53 | f1of | |- ( g : ( 1 ... ( # ` W ) ) -1-1-onto-> W -> g : ( 1 ... ( # ` W ) ) --> W ) |
|
| 54 | 47 53 | syl | |- ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> g : ( 1 ... ( # ` W ) ) --> W ) |
| 55 | fvco3 | |- ( ( g : ( 1 ... ( # ` W ) ) --> W /\ x e. ( 1 ... ( # ` W ) ) ) -> ( ( F o. g ) ` x ) = ( F ` ( g ` x ) ) ) |
|
| 56 | 54 55 | sylan | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ x e. ( 1 ... ( # ` W ) ) ) -> ( ( F o. g ) ` x ) = ( F ` ( g ` x ) ) ) |
| 57 | 45 | ffnd | |- ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> F Fn A ) |
| 58 | 11 | adantr | |- ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> W C_ A ) |
| 59 | 54 58 | fssd | |- ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> g : ( 1 ... ( # ` W ) ) --> A ) |
| 60 | 59 | ffvelcdmda | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ x e. ( 1 ... ( # ` W ) ) ) -> ( g ` x ) e. A ) |
| 61 | fnfvelrn | |- ( ( F Fn A /\ ( g ` x ) e. A ) -> ( F ` ( g ` x ) ) e. ran F ) |
|
| 62 | 57 60 61 | syl2an2r | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ x e. ( 1 ... ( # ` W ) ) ) -> ( F ` ( g ` x ) ) e. ran F ) |
| 63 | 56 62 | eqeltrd | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ x e. ( 1 ... ( # ` W ) ) ) -> ( ( F o. g ) ` x ) e. ran F ) |
| 64 | f1of | |- ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W -> f : ( 1 ... ( # ` W ) ) --> W ) |
|
| 65 | 50 64 | syl | |- ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> f : ( 1 ... ( # ` W ) ) --> W ) |
| 66 | fvco3 | |- ( ( f : ( 1 ... ( # ` W ) ) --> W /\ k e. ( 1 ... ( # ` W ) ) ) -> ( ( `' g o. f ) ` k ) = ( `' g ` ( f ` k ) ) ) |
|
| 67 | 65 66 | sylan | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( ( `' g o. f ) ` k ) = ( `' g ` ( f ` k ) ) ) |
| 68 | 67 | fveq2d | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( g ` ( ( `' g o. f ) ` k ) ) = ( g ` ( `' g ` ( f ` k ) ) ) ) |
| 69 | 65 | ffvelcdmda | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( f ` k ) e. W ) |
| 70 | f1ocnvfv2 | |- ( ( g : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ ( f ` k ) e. W ) -> ( g ` ( `' g ` ( f ` k ) ) ) = ( f ` k ) ) |
|
| 71 | 47 69 70 | syl2an2r | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( g ` ( `' g ` ( f ` k ) ) ) = ( f ` k ) ) |
| 72 | 68 71 | eqtr2d | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( f ` k ) = ( g ` ( ( `' g o. f ) ` k ) ) ) |
| 73 | 72 | fveq2d | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( F ` ( f ` k ) ) = ( F ` ( g ` ( ( `' g o. f ) ` k ) ) ) ) |
| 74 | fvco3 | |- ( ( f : ( 1 ... ( # ` W ) ) --> W /\ k e. ( 1 ... ( # ` W ) ) ) -> ( ( F o. f ) ` k ) = ( F ` ( f ` k ) ) ) |
|
| 75 | 65 74 | sylan | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( ( F o. f ) ` k ) = ( F ` ( f ` k ) ) ) |
| 76 | f1of | |- ( ( `' g o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( 1 ... ( # ` W ) ) -> ( `' g o. f ) : ( 1 ... ( # ` W ) ) --> ( 1 ... ( # ` W ) ) ) |
|
| 77 | 52 76 | syl | |- ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( `' g o. f ) : ( 1 ... ( # ` W ) ) --> ( 1 ... ( # ` W ) ) ) |
| 78 | 77 | ffvelcdmda | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( ( `' g o. f ) ` k ) e. ( 1 ... ( # ` W ) ) ) |
| 79 | fvco3 | |- ( ( g : ( 1 ... ( # ` W ) ) --> A /\ ( ( `' g o. f ) ` k ) e. ( 1 ... ( # ` W ) ) ) -> ( ( F o. g ) ` ( ( `' g o. f ) ` k ) ) = ( F ` ( g ` ( ( `' g o. f ) ` k ) ) ) ) |
|
| 80 | 59 78 79 | syl2an2r | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( ( F o. g ) ` ( ( `' g o. f ) ` k ) ) = ( F ` ( g ` ( ( `' g o. f ) ` k ) ) ) ) |
| 81 | 73 75 80 | 3eqtr4d | |- ( ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( ( F o. f ) ` k ) = ( ( F o. g ) ` ( ( `' g o. f ) ` k ) ) ) |
| 82 | 32 38 40 44 46 52 63 81 | seqf1o | |- ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) |
| 83 | eqeq12 | |- ( ( x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) /\ y = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) -> ( x = y <-> ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) ) |
|
| 84 | 82 83 | syl5ibrcom | |- ( ( ph /\ ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( ( x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) /\ y = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) -> x = y ) ) |
| 85 | 84 | expimpd | |- ( ph -> ( ( ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) /\ ( x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) /\ y = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) ) -> x = y ) ) |
| 86 | 28 85 | biimtrrid | |- ( ph -> ( ( ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) /\ ( g : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ y = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) ) -> x = y ) ) |
| 87 | 86 | exlimdvv | |- ( ph -> ( E. f E. g ( ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) /\ ( g : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ y = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) ) -> x = y ) ) |
| 88 | 27 87 | biimtrrid | |- ( ph -> ( ( E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) /\ E. g ( g : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ y = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) ) -> x = y ) ) |
| 89 | 88 | alrimivv | |- ( ph -> A. x A. y ( ( E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) /\ E. g ( g : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ y = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) ) -> x = y ) ) |
| 90 | eqeq1 | |- ( x = y -> ( x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) <-> y = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) |
|
| 91 | 90 | anbi2d | |- ( x = y -> ( ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) <-> ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ y = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) |
| 92 | 91 | exbidv | |- ( x = y -> ( E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) <-> E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ y = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) |
| 93 | f1oeq1 | |- ( f = g -> ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W <-> g : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) |
|
| 94 | coeq2 | |- ( f = g -> ( F o. f ) = ( F o. g ) ) |
|
| 95 | 94 | seqeq3d | |- ( f = g -> seq 1 ( .+ , ( F o. f ) ) = seq 1 ( .+ , ( F o. g ) ) ) |
| 96 | 95 | fveq1d | |- ( f = g -> ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) |
| 97 | 96 | eqeq2d | |- ( f = g -> ( y = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) <-> y = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) ) |
| 98 | 93 97 | anbi12d | |- ( f = g -> ( ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ y = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) <-> ( g : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ y = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) ) ) |
| 99 | 98 | cbvexvw | |- ( E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ y = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) <-> E. g ( g : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ y = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) ) |
| 100 | 92 99 | bitrdi | |- ( x = y -> ( E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) <-> E. g ( g : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ y = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) ) ) |
| 101 | 100 | eu4 | |- ( E! x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) <-> ( E. x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) /\ A. x A. y ( ( E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) /\ E. g ( g : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ y = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` W ) ) ) ) -> x = y ) ) ) |
| 102 | 26 89 101 | sylanbrc | |- ( ph -> E! x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) |