This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for gsumval3 . (Contributed by AV, 31-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumval3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumval3.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumval3.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumval3.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| gsumval3.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsumval3.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumval3.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsumval3.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | ||
| gsumval3.m | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | ||
| gsumval3.h | ⊢ ( 𝜑 → 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 ) | ||
| gsumval3.n | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) | ||
| gsumval3.w | ⊢ 𝑊 = ( ( 𝐹 ∘ 𝐻 ) supp 0 ) | ||
| Assertion | gsumval3lem1 | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumval3.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumval3.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | gsumval3.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 5 | gsumval3.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 6 | gsumval3.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 7 | gsumval3.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 8 | gsumval3.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | |
| 9 | gsumval3.m | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 10 | gsumval3.h | ⊢ ( 𝜑 → 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 ) | |
| 11 | gsumval3.n | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) | |
| 12 | gsumval3.w | ⊢ 𝑊 = ( ( 𝐹 ∘ 𝐻 ) supp 0 ) | |
| 13 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 ) |
| 14 | suppssdm | ⊢ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ⊆ dom ( 𝐹 ∘ 𝐻 ) | |
| 15 | 12 14 | eqsstri | ⊢ 𝑊 ⊆ dom ( 𝐹 ∘ 𝐻 ) |
| 16 | f1f | ⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 → 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) | |
| 17 | 10 16 | syl | ⊢ ( 𝜑 → 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
| 18 | fco | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) → ( 𝐹 ∘ 𝐻 ) : ( 1 ... 𝑀 ) ⟶ 𝐵 ) | |
| 19 | 7 17 18 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) : ( 1 ... 𝑀 ) ⟶ 𝐵 ) |
| 20 | 15 19 | fssdm | ⊢ ( 𝜑 → 𝑊 ⊆ ( 1 ... 𝑀 ) ) |
| 21 | 20 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝑊 ⊆ ( 1 ... 𝑀 ) ) |
| 22 | f1ores | ⊢ ( ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 ∧ 𝑊 ⊆ ( 1 ... 𝑀 ) ) → ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐻 “ 𝑊 ) ) | |
| 23 | 13 21 22 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐻 “ 𝑊 ) ) |
| 24 | 12 | imaeq2i | ⊢ ( 𝐻 “ 𝑊 ) = ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) |
| 25 | 7 6 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 26 | ovex | ⊢ ( 1 ... 𝑀 ) ∈ V | |
| 27 | fex | ⊢ ( ( 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ∧ ( 1 ... 𝑀 ) ∈ V ) → 𝐻 ∈ V ) | |
| 28 | 16 26 27 | sylancl | ⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 → 𝐻 ∈ V ) |
| 29 | 10 28 | syl | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 30 | f1fun | ⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 → Fun 𝐻 ) | |
| 31 | 10 30 | syl | ⊢ ( 𝜑 → Fun 𝐻 ) |
| 32 | 31 11 | jca | ⊢ ( 𝜑 → ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) ) |
| 33 | 25 29 32 | jca31 | ⊢ ( 𝜑 → ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) ) ) |
| 34 | 33 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) ) ) |
| 35 | imacosupp | ⊢ ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) → ( ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) → ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) = ( 𝐹 supp 0 ) ) ) | |
| 36 | 35 | imp | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) ) → ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) = ( 𝐹 supp 0 ) ) |
| 37 | 34 36 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) = ( 𝐹 supp 0 ) ) |
| 38 | 24 37 | eqtrid | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 “ 𝑊 ) = ( 𝐹 supp 0 ) ) |
| 39 | 38 | f1oeq3d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐻 “ 𝑊 ) ↔ ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐹 supp 0 ) ) ) |
| 40 | 23 39 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐹 supp 0 ) ) |
| 41 | isof1o | ⊢ ( 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) | |
| 42 | 41 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) |
| 43 | f1oco | ⊢ ( ( ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) → ( ( 𝐻 ↾ 𝑊 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) | |
| 44 | 40 42 43 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐻 ↾ 𝑊 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) |
| 45 | f1of | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ) | |
| 46 | frn | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 → ran 𝑓 ⊆ 𝑊 ) | |
| 47 | 42 45 46 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ran 𝑓 ⊆ 𝑊 ) |
| 48 | cores | ⊢ ( ran 𝑓 ⊆ 𝑊 → ( ( 𝐻 ↾ 𝑊 ) ∘ 𝑓 ) = ( 𝐻 ∘ 𝑓 ) ) | |
| 49 | f1oeq1 | ⊢ ( ( ( 𝐻 ↾ 𝑊 ) ∘ 𝑓 ) = ( 𝐻 ∘ 𝑓 ) → ( ( ( 𝐻 ↾ 𝑊 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 𝐹 supp 0 ) ↔ ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) | |
| 50 | 47 48 49 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( ( 𝐻 ↾ 𝑊 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 𝐹 supp 0 ) ↔ ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) |
| 51 | 44 50 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) |
| 52 | fzfi | ⊢ ( 1 ... 𝑀 ) ∈ Fin | |
| 53 | ssfi | ⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ 𝑊 ⊆ ( 1 ... 𝑀 ) ) → 𝑊 ∈ Fin ) | |
| 54 | 52 20 53 | sylancr | ⊢ ( 𝜑 → 𝑊 ∈ Fin ) |
| 55 | 54 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝑊 ∈ Fin ) |
| 56 | 12 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝑊 = ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) |
| 57 | 56 | imaeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 “ 𝑊 ) = ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) ) |
| 58 | 52 | a1i | ⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) |
| 59 | 17 58 | fexd | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 60 | 25 59 32 | jca31 | ⊢ ( 𝜑 → ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) ) ) |
| 61 | 60 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) ) ) |
| 62 | 61 36 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) = ( 𝐹 supp 0 ) ) |
| 63 | 57 62 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 “ 𝑊 ) = ( 𝐹 supp 0 ) ) |
| 64 | 63 | f1oeq3d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐻 “ 𝑊 ) ↔ ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐹 supp 0 ) ) ) |
| 65 | 23 64 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐹 supp 0 ) ) |
| 66 | 55 65 | hasheqf1od | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 𝐹 supp 0 ) ) ) |
| 67 | 66 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 1 ... ( ♯ ‘ 𝑊 ) ) = ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) |
| 68 | 67 | f1oeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 𝐹 supp 0 ) ↔ ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) |
| 69 | 51 68 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) |