This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumval2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumval2.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumval2.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | ||
| gsumval2.n | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| gsumval2.f | ⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) | ||
| gsumval2a.o | ⊢ 𝑂 = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } | ||
| gsumval2a.f | ⊢ ( 𝜑 → ¬ ran 𝐹 ⊆ 𝑂 ) | ||
| Assertion | gsumval2a | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumval2.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | gsumval2.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 4 | gsumval2.n | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 5 | gsumval2.f | ⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) | |
| 6 | gsumval2a.o | ⊢ 𝑂 = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } | |
| 7 | gsumval2a.f | ⊢ ( 𝜑 → ¬ ran 𝐹 ⊆ 𝑂 ) | |
| 8 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 9 | eqidd | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) = ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) | |
| 10 | ovexd | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ V ) | |
| 11 | 1 8 2 6 9 3 10 5 | gsumval | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = if ( ran 𝐹 ⊆ 𝑂 , ( 0g ‘ 𝐺 ) , if ( ( 𝑀 ... 𝑁 ) ∈ ran ... , ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ∧ 𝑧 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) ) ) ) ) ) ) |
| 12 | 7 | iffalsed | ⊢ ( 𝜑 → if ( ran 𝐹 ⊆ 𝑂 , ( 0g ‘ 𝐺 ) , if ( ( 𝑀 ... 𝑁 ) ∈ ran ... , ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ∧ 𝑧 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) ) ) ) ) ) = if ( ( 𝑀 ... 𝑁 ) ∈ ran ... , ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ∧ 𝑧 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) ) ) ) ) ) |
| 13 | fzf | ⊢ ... : ( ℤ × ℤ ) ⟶ 𝒫 ℤ | |
| 14 | ffn | ⊢ ( ... : ( ℤ × ℤ ) ⟶ 𝒫 ℤ → ... Fn ( ℤ × ℤ ) ) | |
| 15 | 13 14 | ax-mp | ⊢ ... Fn ( ℤ × ℤ ) |
| 16 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 17 | 4 16 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 18 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 19 | 4 18 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 20 | fnovrn | ⊢ ( ( ... Fn ( ℤ × ℤ ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ... 𝑁 ) ∈ ran ... ) | |
| 21 | 15 17 19 20 | mp3an2i | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ ran ... ) |
| 22 | 21 | iftrued | ⊢ ( 𝜑 → if ( ( 𝑀 ... 𝑁 ) ∈ ran ... , ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ∧ 𝑧 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) ) ) ) ) = ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 23 | 12 22 | eqtrd | ⊢ ( 𝜑 → if ( ran 𝐹 ⊆ 𝑂 , ( 0g ‘ 𝐺 ) , if ( ( 𝑀 ... 𝑁 ) ∈ ran ... , ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ∧ 𝑧 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) ) ) ) ) ) = ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 24 | 11 23 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 25 | fvex | ⊢ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ V | |
| 26 | fzopth | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ↔ ( 𝑀 = 𝑚 ∧ 𝑁 = 𝑛 ) ) ) | |
| 27 | 4 26 | syl | ⊢ ( 𝜑 → ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ↔ ( 𝑀 = 𝑚 ∧ 𝑁 = 𝑛 ) ) ) |
| 28 | simpl | ⊢ ( ( 𝑀 = 𝑚 ∧ 𝑁 = 𝑛 ) → 𝑀 = 𝑚 ) | |
| 29 | 28 | seqeq1d | ⊢ ( ( 𝑀 = 𝑚 ∧ 𝑁 = 𝑛 ) → seq 𝑀 ( + , 𝐹 ) = seq 𝑚 ( + , 𝐹 ) ) |
| 30 | simpr | ⊢ ( ( 𝑀 = 𝑚 ∧ 𝑁 = 𝑛 ) → 𝑁 = 𝑛 ) | |
| 31 | 29 30 | fveq12d | ⊢ ( ( 𝑀 = 𝑚 ∧ 𝑁 = 𝑛 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) |
| 32 | 31 | eqcomd | ⊢ ( ( 𝑀 = 𝑚 ∧ 𝑁 = 𝑛 ) → ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 33 | eqeq1 | ⊢ ( 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) → ( 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ↔ ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) | |
| 34 | 32 33 | syl5ibrcom | ⊢ ( ( 𝑀 = 𝑚 ∧ 𝑁 = 𝑛 ) → ( 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) → 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 35 | 27 34 | biimtrdi | ⊢ ( 𝜑 → ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) → ( 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) → 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) |
| 36 | 35 | impd | ⊢ ( 𝜑 → ( ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) → 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 37 | 36 | rexlimdvw | ⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) → 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 38 | 37 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) → 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 39 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) → 𝑀 ∈ ℤ ) |
| 40 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑁 ) ) | |
| 41 | 40 | eqcomd | ⊢ ( 𝑛 = 𝑁 → ( 𝑀 ... 𝑁 ) = ( 𝑀 ... 𝑛 ) ) |
| 42 | 41 | biantrurd | ⊢ ( 𝑛 = 𝑁 → ( 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ↔ ( ( 𝑀 ... 𝑁 ) = ( 𝑀 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 43 | fveq2 | ⊢ ( 𝑛 = 𝑁 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) | |
| 44 | 43 | eqeq2d | ⊢ ( 𝑛 = 𝑁 → ( 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ↔ 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 45 | 42 44 | bitr3d | ⊢ ( 𝑛 = 𝑁 → ( ( ( 𝑀 ... 𝑁 ) = ( 𝑀 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ↔ 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 46 | 45 | rspcev | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) → ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑀 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
| 47 | 4 46 | sylan | ⊢ ( ( 𝜑 ∧ 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) → ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑀 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
| 48 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ 𝑀 ) ) | |
| 49 | oveq1 | ⊢ ( 𝑚 = 𝑀 → ( 𝑚 ... 𝑛 ) = ( 𝑀 ... 𝑛 ) ) | |
| 50 | 49 | eqeq2d | ⊢ ( 𝑚 = 𝑀 → ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ↔ ( 𝑀 ... 𝑁 ) = ( 𝑀 ... 𝑛 ) ) ) |
| 51 | seqeq1 | ⊢ ( 𝑚 = 𝑀 → seq 𝑚 ( + , 𝐹 ) = seq 𝑀 ( + , 𝐹 ) ) | |
| 52 | 51 | fveq1d | ⊢ ( 𝑚 = 𝑀 → ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) |
| 53 | 52 | eqeq2d | ⊢ ( 𝑚 = 𝑀 → ( 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ↔ 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
| 54 | 50 53 | anbi12d | ⊢ ( 𝑚 = 𝑀 → ( ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ↔ ( ( 𝑀 ... 𝑁 ) = ( 𝑀 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 55 | 48 54 | rexeqbidv | ⊢ ( 𝑚 = 𝑀 → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ↔ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑀 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 56 | 55 | spcegv | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑀 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) → ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 57 | 39 47 56 | sylc | ⊢ ( ( 𝜑 ∧ 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) → ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
| 58 | 57 | ex | ⊢ ( 𝜑 → ( 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) → ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 59 | 38 58 | impbid | ⊢ ( 𝜑 → ( ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ↔ 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 60 | 59 | adantr | ⊢ ( ( 𝜑 ∧ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ V ) → ( ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ↔ 𝑧 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 61 | 60 | iota5 | ⊢ ( ( 𝜑 ∧ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ V ) → ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 62 | 25 61 | mpan2 | ⊢ ( 𝜑 → ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝑀 ... 𝑁 ) = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 63 | 24 62 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |