This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group sum operation when every element being summed is an identity of G . (Contributed by Mario Carneiro, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumval1.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumval1.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumval1.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumval1.o | ⊢ 𝑂 = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } | ||
| gsumval1.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | ||
| gsumval1.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) | ||
| gsumval1.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑂 ) | ||
| Assertion | gsumval1 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval1.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumval1.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumval1.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | gsumval1.o | ⊢ 𝑂 = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } | |
| 5 | gsumval1.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 6 | gsumval1.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) | |
| 7 | gsumval1.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑂 ) | |
| 8 | eqidd | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) = ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) | |
| 9 | 4 | ssrab3 | ⊢ 𝑂 ⊆ 𝐵 |
| 10 | fss | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑂 ∧ 𝑂 ⊆ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 11 | 7 9 10 | sylancl | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 12 | 1 2 3 4 8 5 6 11 | gsumval | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = if ( ran 𝐹 ⊆ 𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ∧ 𝑧 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) ) ) ) ) ) ) |
| 13 | frn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝑂 → ran 𝐹 ⊆ 𝑂 ) | |
| 14 | iftrue | ⊢ ( ran 𝐹 ⊆ 𝑂 → if ( ran 𝐹 ⊆ 𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ∧ 𝑧 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) ) ) ) ) ) = 0 ) | |
| 15 | 7 13 14 | 3syl | ⊢ ( 𝜑 → if ( ran 𝐹 ⊆ 𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ∧ 𝑧 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) ) ) ) ) ) = 0 ) |
| 16 | 12 15 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = 0 ) |