This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in Lang p. 4, first formula. (Contributed by AV, 26-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsplit1r.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumsplit1r.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumsplit1r.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | ||
| gsumsplit1r.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| gsumsplit1r.n | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| gsumsplit1r.f | ⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐵 ) | ||
| Assertion | gsumsplit1r | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsplit1r.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumsplit1r.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | gsumsplit1r.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 4 | gsumsplit1r.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 5 | gsumsplit1r.n | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 6 | gsumsplit1r.f | ⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐵 ) | |
| 7 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 8 | 5 7 | syl | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 9 | 1 2 3 8 6 | gsumval2 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) |
| 10 | seqp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) | |
| 11 | 5 10 | syl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
| 12 | fzssp1 | ⊢ ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) | |
| 13 | 12 | a1i | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 14 | 6 13 | fssresd | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) |
| 15 | 1 2 3 5 14 | gsumval2 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) = ( seq 𝑀 ( + , ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) ) |
| 16 | 4 | uzidd | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 17 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑀 ) = ( ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑀 ) ) | |
| 18 | 4 17 | syl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑀 ) = ( ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑀 ) ) |
| 19 | eluzfz1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 20 | 5 19 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 21 | 20 | fvresd | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 22 | 18 21 | eqtrd | ⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 23 | fzp1ss | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 24 | 4 23 | syl | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 25 | 24 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
| 26 | 25 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 27 | 16 22 5 26 | seqfveq2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 28 | 15 27 | eqtr2d | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) ) |
| 29 | 28 | oveq1d | ⊢ ( 𝜑 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) = ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
| 30 | 9 11 29 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |