This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the set of identities of G . Either G has no identities, and O = (/) , or it has one and this identity is unique and identified by the 0g function. (Contributed by Mario Carneiro, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgmidsssn0.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mgmidsssn0.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| mgmidsssn0.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| mgmidsssn0.o | ⊢ 𝑂 = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } | ||
| Assertion | mgmidsssn0 | ⊢ ( 𝐺 ∈ 𝑉 → 𝑂 ⊆ { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmidsssn0.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mgmidsssn0.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | mgmidsssn0.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | mgmidsssn0.o | ⊢ 𝑂 = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } | |
| 5 | simpr | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) → ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) | |
| 6 | oveq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 + 𝑦 ) = ( 𝑥 + 𝑦 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 + 𝑦 ) = 𝑦 ↔ ( 𝑥 + 𝑦 ) = 𝑦 ) ) |
| 8 | 7 | ovanraleqv | ⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) |
| 9 | 8 | rspcev | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) → ∃ 𝑧 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) → ∃ 𝑧 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) ) |
| 11 | 1 2 3 10 | ismgmid | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ↔ 0 = 𝑥 ) ) |
| 12 | 5 11 | mpbid | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) → 0 = 𝑥 ) |
| 13 | 12 | eqcomd | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) → 𝑥 = 0 ) |
| 14 | velsn | ⊢ ( 𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) | |
| 15 | 13 14 | sylibr | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) → 𝑥 ∈ { 0 } ) |
| 16 | 15 | expr | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) → 𝑥 ∈ { 0 } ) ) |
| 17 | 16 | ralrimiva | ⊢ ( 𝐺 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) → 𝑥 ∈ { 0 } ) ) |
| 18 | rabss | ⊢ ( { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ⊆ { 0 } ↔ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) → 𝑥 ∈ { 0 } ) ) | |
| 19 | 17 18 | sylibr | ⊢ ( 𝐺 ∈ 𝑉 → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ⊆ { 0 } ) |
| 20 | 4 19 | eqsstrid | ⊢ ( 𝐺 ∈ 𝑉 → 𝑂 ⊆ { 0 } ) |