This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum in an ordered monoid is monotonic. This proof would be much easier in an ordered group, where an inverse element would be available. (Contributed by Thierry Arnoux, 13-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumle.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| gsumle.l | ⊢ ≤ = ( le ‘ 𝑀 ) | ||
| gsumle.m | ⊢ ( 𝜑 → 𝑀 ∈ oMnd ) | ||
| gsumle.n | ⊢ ( 𝜑 → 𝑀 ∈ CMnd ) | ||
| gsumle.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| gsumle.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsumle.g | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) | ||
| gsumle.c | ⊢ ( 𝜑 → 𝐹 ∘r ≤ 𝐺 ) | ||
| Assertion | gsumle | ⊢ ( 𝜑 → ( 𝑀 Σg 𝐹 ) ≤ ( 𝑀 Σg 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumle.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | gsumle.l | ⊢ ≤ = ( le ‘ 𝑀 ) | |
| 3 | gsumle.m | ⊢ ( 𝜑 → 𝑀 ∈ oMnd ) | |
| 4 | gsumle.n | ⊢ ( 𝜑 → 𝑀 ∈ CMnd ) | |
| 5 | gsumle.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 6 | gsumle.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 7 | gsumle.g | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) | |
| 8 | gsumle.c | ⊢ ( 𝜑 → 𝐹 ∘r ≤ 𝐺 ) | |
| 9 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 10 | sseq1 | ⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) | |
| 11 | 10 | anbi2d | ⊢ ( 𝑎 = ∅ → ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ ∅ ⊆ 𝐴 ) ) ) |
| 12 | reseq2 | ⊢ ( 𝑎 = ∅ → ( 𝐹 ↾ 𝑎 ) = ( 𝐹 ↾ ∅ ) ) | |
| 13 | 12 | oveq2d | ⊢ ( 𝑎 = ∅ → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ) |
| 14 | reseq2 | ⊢ ( 𝑎 = ∅ → ( 𝐺 ↾ 𝑎 ) = ( 𝐺 ↾ ∅ ) ) | |
| 15 | 14 | oveq2d | ⊢ ( 𝑎 = ∅ → ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐺 ↾ ∅ ) ) ) |
| 16 | 13 15 | breq12d | ⊢ ( 𝑎 = ∅ → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ↔ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ∅ ) ) ) ) |
| 17 | 11 16 | imbi12d | ⊢ ( 𝑎 = ∅ → ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ) ↔ ( ( 𝜑 ∧ ∅ ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ∅ ) ) ) ) ) |
| 18 | sseq1 | ⊢ ( 𝑎 = 𝑒 → ( 𝑎 ⊆ 𝐴 ↔ 𝑒 ⊆ 𝐴 ) ) | |
| 19 | 18 | anbi2d | ⊢ ( 𝑎 = 𝑒 → ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ 𝑒 ⊆ 𝐴 ) ) ) |
| 20 | reseq2 | ⊢ ( 𝑎 = 𝑒 → ( 𝐹 ↾ 𝑎 ) = ( 𝐹 ↾ 𝑒 ) ) | |
| 21 | 20 | oveq2d | ⊢ ( 𝑎 = 𝑒 → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ) |
| 22 | reseq2 | ⊢ ( 𝑎 = 𝑒 → ( 𝐺 ↾ 𝑎 ) = ( 𝐺 ↾ 𝑒 ) ) | |
| 23 | 22 | oveq2d | ⊢ ( 𝑎 = 𝑒 → ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) |
| 24 | 21 23 | breq12d | ⊢ ( 𝑎 = 𝑒 → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ↔ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) ) |
| 25 | 19 24 | imbi12d | ⊢ ( 𝑎 = 𝑒 → ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ) ↔ ( ( 𝜑 ∧ 𝑒 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) ) ) |
| 26 | sseq1 | ⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( 𝑎 ⊆ 𝐴 ↔ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) | |
| 27 | 26 | anbi2d | ⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) ) |
| 28 | reseq2 | ⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( 𝐹 ↾ 𝑎 ) = ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) | |
| 29 | 28 | oveq2d | ⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) |
| 30 | reseq2 | ⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( 𝐺 ↾ 𝑎 ) = ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) | |
| 31 | 30 | oveq2d | ⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) |
| 32 | 29 31 | breq12d | ⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ↔ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) ) |
| 33 | 27 32 | imbi12d | ⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) ) ) |
| 34 | sseq1 | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) | |
| 35 | 34 | anbi2d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) ) ) |
| 36 | reseq2 | ⊢ ( 𝑎 = 𝐴 → ( 𝐹 ↾ 𝑎 ) = ( 𝐹 ↾ 𝐴 ) ) | |
| 37 | 36 | oveq2d | ⊢ ( 𝑎 = 𝐴 → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ) |
| 38 | reseq2 | ⊢ ( 𝑎 = 𝐴 → ( 𝐺 ↾ 𝑎 ) = ( 𝐺 ↾ 𝐴 ) ) | |
| 39 | 38 | oveq2d | ⊢ ( 𝑎 = 𝐴 → ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) |
| 40 | 37 39 | breq12d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ↔ ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) ) |
| 41 | 35 40 | imbi12d | ⊢ ( 𝑎 = 𝐴 → ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ) ↔ ( ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) ) ) |
| 42 | omndtos | ⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Toset ) | |
| 43 | tospos | ⊢ ( 𝑀 ∈ Toset → 𝑀 ∈ Poset ) | |
| 44 | 3 42 43 | 3syl | ⊢ ( 𝜑 → 𝑀 ∈ Poset ) |
| 45 | res0 | ⊢ ( 𝐹 ↾ ∅ ) = ∅ | |
| 46 | 45 | oveq2i | ⊢ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) = ( 𝑀 Σg ∅ ) |
| 47 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 48 | 47 | gsum0 | ⊢ ( 𝑀 Σg ∅ ) = ( 0g ‘ 𝑀 ) |
| 49 | 46 48 | eqtri | ⊢ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) = ( 0g ‘ 𝑀 ) |
| 50 | omndmnd | ⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Mnd ) | |
| 51 | 1 47 | mndidcl | ⊢ ( 𝑀 ∈ Mnd → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 52 | 3 50 51 | 3syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 53 | 49 52 | eqeltrid | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ∈ 𝐵 ) |
| 54 | 1 2 | posref | ⊢ ( ( 𝑀 ∈ Poset ∧ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ∈ 𝐵 ) → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ≤ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ) |
| 55 | 44 53 54 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ≤ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ) |
| 56 | res0 | ⊢ ( 𝐺 ↾ ∅ ) = ∅ | |
| 57 | 45 56 | eqtr4i | ⊢ ( 𝐹 ↾ ∅ ) = ( 𝐺 ↾ ∅ ) |
| 58 | 57 | oveq2i | ⊢ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) = ( 𝑀 Σg ( 𝐺 ↾ ∅ ) ) |
| 59 | 55 58 | breqtrdi | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ∅ ) ) ) |
| 60 | 59 | adantr | ⊢ ( ( 𝜑 ∧ ∅ ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ∅ ) ) ) |
| 61 | ssun1 | ⊢ 𝑒 ⊆ ( 𝑒 ∪ { 𝑦 } ) | |
| 62 | sstr2 | ⊢ ( 𝑒 ⊆ ( 𝑒 ∪ { 𝑦 } ) → ( ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 → 𝑒 ⊆ 𝐴 ) ) | |
| 63 | 61 62 | ax-mp | ⊢ ( ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 → 𝑒 ⊆ 𝐴 ) |
| 64 | 63 | anim2i | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝜑 ∧ 𝑒 ⊆ 𝐴 ) ) |
| 65 | 64 | imim1i | ⊢ ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) ) |
| 66 | simplr | ⊢ ( ( ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) | |
| 67 | simpllr | ⊢ ( ( ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ¬ 𝑦 ∈ 𝑒 ) | |
| 68 | simpr | ⊢ ( ( ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) | |
| 69 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 70 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → 𝑀 ∈ oMnd ) |
| 71 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
| 72 | simplr | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) | |
| 73 | ssun2 | ⊢ { 𝑦 } ⊆ ( 𝑒 ∪ { 𝑦 } ) | |
| 74 | vex | ⊢ 𝑦 ∈ V | |
| 75 | 74 | snss | ⊢ ( 𝑦 ∈ ( 𝑒 ∪ { 𝑦 } ) ↔ { 𝑦 } ⊆ ( 𝑒 ∪ { 𝑦 } ) ) |
| 76 | 73 75 | mpbir | ⊢ 𝑦 ∈ ( 𝑒 ∪ { 𝑦 } ) |
| 77 | 76 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑦 ∈ ( 𝑒 ∪ { 𝑦 } ) ) |
| 78 | 72 77 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑦 ∈ 𝐴 ) |
| 79 | 71 78 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ) |
| 80 | 79 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ) |
| 81 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑀 ∈ CMnd ) |
| 82 | vex | ⊢ 𝑒 ∈ V | |
| 83 | 82 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑒 ∈ V ) |
| 84 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 85 | 61 72 | sstrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑒 ⊆ 𝐴 ) |
| 86 | 84 85 | fssresd | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐹 ↾ 𝑒 ) : 𝑒 ⟶ 𝐵 ) |
| 87 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝐴 ∈ Fin ) |
| 88 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 0g ‘ 𝑀 ) ∈ V ) | |
| 89 | 84 87 88 | fdmfifsupp | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝐹 finSupp ( 0g ‘ 𝑀 ) ) |
| 90 | 89 88 | fsuppres | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐹 ↾ 𝑒 ) finSupp ( 0g ‘ 𝑀 ) ) |
| 91 | 1 47 81 83 86 90 | gsumcl | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ∈ 𝐵 ) |
| 92 | 91 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ∈ 𝐵 ) |
| 93 | 84 78 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 94 | 93 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 95 | 71 85 | fssresd | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐺 ↾ 𝑒 ) : 𝑒 ⟶ 𝐵 ) |
| 96 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑒 ⊆ 𝐴 ) → 𝑒 ∈ Fin ) | |
| 97 | 87 85 96 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑒 ∈ Fin ) |
| 98 | 95 97 88 | fdmfifsupp | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐺 ↾ 𝑒 ) finSupp ( 0g ‘ 𝑀 ) ) |
| 99 | 1 47 81 83 95 98 | gsumcl | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ∈ 𝐵 ) |
| 100 | 99 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ∈ 𝐵 ) |
| 101 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) | |
| 102 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝜑 ) | |
| 103 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝐹 ∘r ≤ 𝐺 ) |
| 104 | 6 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 105 | 7 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 106 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 107 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 108 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 109 | 104 105 5 5 106 107 108 | ofrval | ⊢ ( ( 𝜑 ∧ 𝐹 ∘r ≤ 𝐺 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐺 ‘ 𝑦 ) ) |
| 110 | 102 103 78 109 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐺 ‘ 𝑦 ) ) |
| 111 | 110 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐺 ‘ 𝑦 ) ) |
| 112 | 81 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → 𝑀 ∈ CMnd ) |
| 113 | 1 2 69 70 80 92 94 100 101 111 112 | omndadd2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 114 | 97 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → 𝑒 ∈ Fin ) |
| 115 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝑒 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 116 | simplr | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝑒 ) → ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) | |
| 117 | elun1 | ⊢ ( 𝑧 ∈ 𝑒 → 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ) | |
| 118 | 117 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝑒 ) → 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ) |
| 119 | 116 118 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝑒 ) → 𝑧 ∈ 𝐴 ) |
| 120 | 115 119 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝑒 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
| 121 | 120 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑧 ∈ 𝑒 → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) ) |
| 122 | 121 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑧 ∈ 𝑒 → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) ) |
| 123 | 122 | imp | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) ∧ 𝑧 ∈ 𝑒 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
| 124 | 74 | a1i | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → 𝑦 ∈ V ) |
| 125 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ¬ 𝑦 ∈ 𝑒 ) | |
| 126 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 127 | 1 69 112 114 123 124 125 94 126 | gsumunsn | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐹 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 128 | 84 72 | feqresmpt | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) = ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 129 | 128 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 130 | 84 85 | feqresmpt | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐹 ↾ 𝑒 ) = ( 𝑧 ∈ 𝑒 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 131 | 130 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) = ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 132 | 131 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐹 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 133 | 129 132 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐹 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 134 | 133 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐹 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 135 | 127 134 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 136 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
| 137 | 136 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ 𝑧 ∈ 𝑒 ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
| 138 | 119 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ 𝑧 ∈ 𝑒 ) → 𝑧 ∈ 𝐴 ) |
| 139 | 137 138 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ 𝑧 ∈ 𝑒 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝐵 ) |
| 140 | 74 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑦 ∈ V ) |
| 141 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ¬ 𝑦 ∈ 𝑒 ) | |
| 142 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 143 | 1 69 81 97 139 140 141 79 142 | gsumunsn | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 144 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) | |
| 145 | 136 144 | feqresmpt | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) = ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 146 | 145 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 147 | resabs1 | ⊢ ( 𝑒 ⊆ ( 𝑒 ∪ { 𝑦 } ) → ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) = ( 𝐺 ↾ 𝑒 ) ) | |
| 148 | 61 147 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) = ( 𝐺 ↾ 𝑒 ) ) |
| 149 | 63 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑒 ⊆ 𝐴 ) |
| 150 | 136 149 | feqresmpt | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝐺 ↾ 𝑒 ) = ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 151 | 148 150 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) = ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 152 | 151 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) = ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 153 | resabs1 | ⊢ ( { 𝑦 } ⊆ ( 𝑒 ∪ { 𝑦 } ) → ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) = ( 𝐺 ↾ { 𝑦 } ) ) | |
| 154 | 73 153 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) = ( 𝐺 ↾ { 𝑦 } ) ) |
| 155 | 73 144 | sstrid | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → { 𝑦 } ⊆ 𝐴 ) |
| 156 | 136 155 | feqresmpt | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝐺 ↾ { 𝑦 } ) = ( 𝑧 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 157 | 154 156 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) = ( 𝑧 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 158 | 157 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) = ( 𝑀 Σg ( 𝑧 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 159 | 3 50 | syl | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 160 | 159 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑀 ∈ Mnd ) |
| 161 | 74 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑦 ∈ V ) |
| 162 | 76 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑦 ∈ ( 𝑒 ∪ { 𝑦 } ) ) |
| 163 | 144 162 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
| 164 | 136 163 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ) |
| 165 | 142 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑧 = 𝑦 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 166 | 1 160 161 164 165 | gsumsnd | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝑧 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑧 ) ) ) = ( 𝐺 ‘ 𝑦 ) ) |
| 167 | 158 166 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) = ( 𝐺 ‘ 𝑦 ) ) |
| 168 | 152 167 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 169 | 146 168 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) ) ↔ ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 170 | 169 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) ) ↔ ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 171 | 143 170 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) ) ) |
| 172 | 61 147 | ax-mp | ⊢ ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) = ( 𝐺 ↾ 𝑒 ) |
| 173 | 172 | oveq2i | ⊢ ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) = ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) |
| 174 | 73 153 | ax-mp | ⊢ ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) = ( 𝐺 ↾ { 𝑦 } ) |
| 175 | 174 | oveq2i | ⊢ ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) = ( 𝑀 Σg ( 𝐺 ↾ { 𝑦 } ) ) |
| 176 | 173 175 | oveq12i | ⊢ ( ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝐺 ↾ { 𝑦 } ) ) ) |
| 177 | 171 176 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝐺 ↾ { 𝑦 } ) ) ) ) |
| 178 | 73 72 | sstrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → { 𝑦 } ⊆ 𝐴 ) |
| 179 | 71 178 | feqresmpt | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐺 ↾ { 𝑦 } ) = ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 180 | 179 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐺 ↾ { 𝑦 } ) ) = ( 𝑀 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 181 | cmnmnd | ⊢ ( 𝑀 ∈ CMnd → 𝑀 ∈ Mnd ) | |
| 182 | 81 181 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑀 ∈ Mnd ) |
| 183 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 184 | 1 183 | gsumsn | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑦 ∈ V ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ) → ( 𝑀 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝐺 ‘ 𝑦 ) ) |
| 185 | 182 140 79 184 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝐺 ‘ 𝑦 ) ) |
| 186 | 180 185 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐺 ↾ { 𝑦 } ) ) = ( 𝐺 ‘ 𝑦 ) ) |
| 187 | 186 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝐺 ↾ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 188 | 177 187 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 189 | 188 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 190 | 113 135 189 | 3brtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) |
| 191 | 66 67 68 190 | syl21anc | ⊢ ( ( ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) |
| 192 | 191 | exp31 | ⊢ ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) ) ) |
| 193 | 192 | a2d | ⊢ ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) ) ) |
| 194 | 65 193 | syl5 | ⊢ ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) ) ) |
| 195 | 17 25 33 41 60 194 | findcard2s | ⊢ ( 𝐴 ∈ Fin → ( ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) ) |
| 196 | 195 | imp | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) ) → ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) |
| 197 | 9 196 | mpanr2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝜑 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) |
| 198 | 5 197 | mpancom | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) |
| 199 | fnresdm | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) | |
| 200 | 104 199 | syl | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 201 | 200 | oveq2d | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) = ( 𝑀 Σg 𝐹 ) ) |
| 202 | fnresdm | ⊢ ( 𝐺 Fn 𝐴 → ( 𝐺 ↾ 𝐴 ) = 𝐺 ) | |
| 203 | 105 202 | syl | ⊢ ( 𝜑 → ( 𝐺 ↾ 𝐴 ) = 𝐺 ) |
| 204 | 203 | oveq2d | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) = ( 𝑀 Σg 𝐺 ) ) |
| 205 | 198 201 204 | 3brtr3d | ⊢ ( 𝜑 → ( 𝑀 Σg 𝐹 ) ≤ ( 𝑀 Σg 𝐺 ) ) |