This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a commutative left ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 30-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omndadd.0 | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| omndadd.1 | ⊢ ≤ = ( le ‘ 𝑀 ) | ||
| omndadd.2 | ⊢ + = ( +g ‘ 𝑀 ) | ||
| omndadd2d.m | ⊢ ( 𝜑 → 𝑀 ∈ oMnd ) | ||
| omndadd2d.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) | ||
| omndadd2d.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| omndadd2d.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| omndadd2d.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| omndadd2d.1 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑍 ) | ||
| omndadd2d.2 | ⊢ ( 𝜑 → 𝑌 ≤ 𝑊 ) | ||
| omndadd2d.c | ⊢ ( 𝜑 → 𝑀 ∈ CMnd ) | ||
| Assertion | omndadd2d | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ≤ ( 𝑍 + 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndadd.0 | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | omndadd.1 | ⊢ ≤ = ( le ‘ 𝑀 ) | |
| 3 | omndadd.2 | ⊢ + = ( +g ‘ 𝑀 ) | |
| 4 | omndadd2d.m | ⊢ ( 𝜑 → 𝑀 ∈ oMnd ) | |
| 5 | omndadd2d.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) | |
| 6 | omndadd2d.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | omndadd2d.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | omndadd2d.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 9 | omndadd2d.1 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑍 ) | |
| 10 | omndadd2d.2 | ⊢ ( 𝜑 → 𝑌 ≤ 𝑊 ) | |
| 11 | omndadd2d.c | ⊢ ( 𝜑 → 𝑀 ∈ CMnd ) | |
| 12 | omndtos | ⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Toset ) | |
| 13 | tospos | ⊢ ( 𝑀 ∈ Toset → 𝑀 ∈ Poset ) | |
| 14 | 4 12 13 | 3syl | ⊢ ( 𝜑 → 𝑀 ∈ Poset ) |
| 15 | omndmnd | ⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Mnd ) | |
| 16 | 4 15 | syl | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 17 | 1 3 | mndcl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 18 | 16 6 7 17 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 19 | 1 3 | mndcl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑍 + 𝑌 ) ∈ 𝐵 ) |
| 20 | 16 8 7 19 | syl3anc | ⊢ ( 𝜑 → ( 𝑍 + 𝑌 ) ∈ 𝐵 ) |
| 21 | 1 3 | mndcl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑍 + 𝑊 ) ∈ 𝐵 ) |
| 22 | 16 8 5 21 | syl3anc | ⊢ ( 𝜑 → ( 𝑍 + 𝑊 ) ∈ 𝐵 ) |
| 23 | 18 20 22 | 3jca | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ ( 𝑍 + 𝑌 ) ∈ 𝐵 ∧ ( 𝑍 + 𝑊 ) ∈ 𝐵 ) ) |
| 24 | 1 2 3 | omndadd | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑍 ) → ( 𝑋 + 𝑌 ) ≤ ( 𝑍 + 𝑌 ) ) |
| 25 | 4 6 8 7 9 24 | syl131anc | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ≤ ( 𝑍 + 𝑌 ) ) |
| 26 | 1 2 3 | omndadd | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑌 ≤ 𝑊 ) → ( 𝑌 + 𝑍 ) ≤ ( 𝑊 + 𝑍 ) ) |
| 27 | 4 7 5 8 10 26 | syl131anc | ⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) ≤ ( 𝑊 + 𝑍 ) ) |
| 28 | 1 3 | cmncom | ⊢ ( ( 𝑀 ∈ CMnd ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 + 𝑍 ) = ( 𝑍 + 𝑌 ) ) |
| 29 | 11 7 8 28 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) = ( 𝑍 + 𝑌 ) ) |
| 30 | 1 3 | cmncom | ⊢ ( ( 𝑀 ∈ CMnd ∧ 𝑊 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑊 + 𝑍 ) = ( 𝑍 + 𝑊 ) ) |
| 31 | 11 5 8 30 | syl3anc | ⊢ ( 𝜑 → ( 𝑊 + 𝑍 ) = ( 𝑍 + 𝑊 ) ) |
| 32 | 27 29 31 | 3brtr3d | ⊢ ( 𝜑 → ( 𝑍 + 𝑌 ) ≤ ( 𝑍 + 𝑊 ) ) |
| 33 | 1 2 | postr | ⊢ ( ( 𝑀 ∈ Poset ∧ ( ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ ( 𝑍 + 𝑌 ) ∈ 𝐵 ∧ ( 𝑍 + 𝑊 ) ∈ 𝐵 ) ) → ( ( ( 𝑋 + 𝑌 ) ≤ ( 𝑍 + 𝑌 ) ∧ ( 𝑍 + 𝑌 ) ≤ ( 𝑍 + 𝑊 ) ) → ( 𝑋 + 𝑌 ) ≤ ( 𝑍 + 𝑊 ) ) ) |
| 34 | 33 | imp | ⊢ ( ( ( 𝑀 ∈ Poset ∧ ( ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ ( 𝑍 + 𝑌 ) ∈ 𝐵 ∧ ( 𝑍 + 𝑊 ) ∈ 𝐵 ) ) ∧ ( ( 𝑋 + 𝑌 ) ≤ ( 𝑍 + 𝑌 ) ∧ ( 𝑍 + 𝑌 ) ≤ ( 𝑍 + 𝑊 ) ) ) → ( 𝑋 + 𝑌 ) ≤ ( 𝑍 + 𝑊 ) ) |
| 35 | 14 23 25 32 34 | syl22anc | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ≤ ( 𝑍 + 𝑊 ) ) |