This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011) (Proof shortened by OpenAI, 25-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | posi.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| posi.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| Assertion | posref | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | posi.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | posi.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | posprs | ⊢ ( 𝐾 ∈ Poset → 𝐾 ∈ Proset ) | |
| 4 | 1 2 | prsref | ⊢ ( ( 𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
| 5 | 3 4 | sylan | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |