This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | offval.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| offval.2 | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) | ||
| offval.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| offval.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| offval.5 | ⊢ ( 𝐴 ∩ 𝐵 ) = 𝑆 | ||
| ofval.6 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = 𝐶 ) | ||
| ofval.7 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑋 ) = 𝐷 ) | ||
| Assertion | ofrval | ⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ∧ 𝑋 ∈ 𝑆 ) → 𝐶 𝑅 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| 2 | offval.2 | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) | |
| 3 | offval.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 4 | offval.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 5 | offval.5 | ⊢ ( 𝐴 ∩ 𝐵 ) = 𝑆 | |
| 6 | ofval.6 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = 𝐶 ) | |
| 7 | ofval.7 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑋 ) = 𝐷 ) | |
| 8 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 9 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 10 | 1 2 3 4 5 8 9 | ofrfval | ⊢ ( 𝜑 → ( 𝐹 ∘r 𝑅 𝐺 ↔ ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
| 11 | 10 | biimpa | ⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ) → ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) |
| 12 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 13 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑋 ) ) | |
| 14 | 12 13 | breq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑋 ) 𝑅 ( 𝐺 ‘ 𝑋 ) ) ) |
| 15 | 14 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) → ( 𝑋 ∈ 𝑆 → ( 𝐹 ‘ 𝑋 ) 𝑅 ( 𝐺 ‘ 𝑋 ) ) ) |
| 16 | 11 15 | syl | ⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ) → ( 𝑋 ∈ 𝑆 → ( 𝐹 ‘ 𝑋 ) 𝑅 ( 𝐺 ‘ 𝑋 ) ) ) |
| 17 | 16 | 3impia | ⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑋 ) 𝑅 ( 𝐺 ‘ 𝑋 ) ) |
| 18 | simp1 | ⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ∧ 𝑋 ∈ 𝑆 ) → 𝜑 ) | |
| 19 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 20 | 5 19 | eqsstrri | ⊢ 𝑆 ⊆ 𝐴 |
| 21 | simp3 | ⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) | |
| 22 | 20 21 | sselid | ⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝐴 ) |
| 23 | 18 22 6 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑋 ) = 𝐶 ) |
| 24 | inss2 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 | |
| 25 | 5 24 | eqsstrri | ⊢ 𝑆 ⊆ 𝐵 |
| 26 | 25 21 | sselid | ⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝐵 ) |
| 27 | 18 26 7 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑋 ) = 𝐷 ) |
| 28 | 17 23 27 | 3brtr3d | ⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ∧ 𝑋 ∈ 𝑆 ) → 𝐶 𝑅 𝐷 ) |