This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strengthen the assumptions of ftc1 to when the function F is continuous on the entire interval ( A , B ) ; in this case we can calculate _D G exactly. (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc1cn.g | |- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
|
| ftc1cn.a | |- ( ph -> A e. RR ) |
||
| ftc1cn.b | |- ( ph -> B e. RR ) |
||
| ftc1cn.le | |- ( ph -> A <_ B ) |
||
| ftc1cn.f | |- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
||
| ftc1cn.i | |- ( ph -> F e. L^1 ) |
||
| Assertion | ftc1cn | |- ( ph -> ( RR _D G ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc1cn.g | |- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
|
| 2 | ftc1cn.a | |- ( ph -> A e. RR ) |
|
| 3 | ftc1cn.b | |- ( ph -> B e. RR ) |
|
| 4 | ftc1cn.le | |- ( ph -> A <_ B ) |
|
| 5 | ftc1cn.f | |- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
|
| 6 | ftc1cn.i | |- ( ph -> F e. L^1 ) |
|
| 7 | dvf | |- ( RR _D G ) : dom ( RR _D G ) --> CC |
|
| 8 | 7 | a1i | |- ( ph -> ( RR _D G ) : dom ( RR _D G ) --> CC ) |
| 9 | 8 | ffund | |- ( ph -> Fun ( RR _D G ) ) |
| 10 | ax-resscn | |- RR C_ CC |
|
| 11 | 10 | a1i | |- ( ph -> RR C_ CC ) |
| 12 | ssidd | |- ( ph -> ( A (,) B ) C_ ( A (,) B ) ) |
|
| 13 | ioossre | |- ( A (,) B ) C_ RR |
|
| 14 | 13 | a1i | |- ( ph -> ( A (,) B ) C_ RR ) |
| 15 | cncff | |- ( F e. ( ( A (,) B ) -cn-> CC ) -> F : ( A (,) B ) --> CC ) |
|
| 16 | 5 15 | syl | |- ( ph -> F : ( A (,) B ) --> CC ) |
| 17 | 1 2 3 4 12 14 6 16 | ftc1lem2 | |- ( ph -> G : ( A [,] B ) --> CC ) |
| 18 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 19 | 2 3 18 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 20 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 21 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 22 | 11 17 19 20 21 | dvbssntr | |- ( ph -> dom ( RR _D G ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 23 | iccntr | |- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
|
| 24 | 2 3 23 | syl2anc | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 25 | 22 24 | sseqtrd | |- ( ph -> dom ( RR _D G ) C_ ( A (,) B ) ) |
| 26 | 2 | adantr | |- ( ( ph /\ y e. ( A (,) B ) ) -> A e. RR ) |
| 27 | 3 | adantr | |- ( ( ph /\ y e. ( A (,) B ) ) -> B e. RR ) |
| 28 | 4 | adantr | |- ( ( ph /\ y e. ( A (,) B ) ) -> A <_ B ) |
| 29 | ssidd | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( A (,) B ) C_ ( A (,) B ) ) |
|
| 30 | 13 | a1i | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( A (,) B ) C_ RR ) |
| 31 | 6 | adantr | |- ( ( ph /\ y e. ( A (,) B ) ) -> F e. L^1 ) |
| 32 | simpr | |- ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( A (,) B ) ) |
|
| 33 | 13 10 | sstri | |- ( A (,) B ) C_ CC |
| 34 | ssid | |- CC C_ CC |
|
| 35 | eqid | |- ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) |
|
| 36 | 21 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 37 | 36 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 38 | 21 35 37 | cncfcn | |- ( ( ( A (,) B ) C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 39 | 33 34 38 | mp2an | |- ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) |
| 40 | 5 39 | eleqtrdi | |- ( ph -> F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 41 | 40 | adantr | |- ( ( ph /\ y e. ( A (,) B ) ) -> F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 42 | 33 | a1i | |- ( ph -> ( A (,) B ) C_ CC ) |
| 43 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( A (,) B ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) ) |
|
| 44 | 36 42 43 | sylancr | |- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) ) |
| 45 | toponuni | |- ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) -> ( A (,) B ) = U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) |
|
| 46 | 44 45 | syl | |- ( ph -> ( A (,) B ) = U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) |
| 47 | 46 | eleq2d | |- ( ph -> ( y e. ( A (,) B ) <-> y e. U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) ) |
| 48 | 47 | biimpa | |- ( ( ph /\ y e. ( A (,) B ) ) -> y e. U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) |
| 49 | eqid | |- U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) |
|
| 50 | 49 | cncnpi | |- ( ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) /\ y e. U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 51 | 41 48 50 | syl2anc | |- ( ( ph /\ y e. ( A (,) B ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 52 | 1 26 27 28 29 30 31 32 51 20 35 21 | ftc1 | |- ( ( ph /\ y e. ( A (,) B ) ) -> y ( RR _D G ) ( F ` y ) ) |
| 53 | vex | |- y e. _V |
|
| 54 | fvex | |- ( F ` y ) e. _V |
|
| 55 | 53 54 | breldm | |- ( y ( RR _D G ) ( F ` y ) -> y e. dom ( RR _D G ) ) |
| 56 | 52 55 | syl | |- ( ( ph /\ y e. ( A (,) B ) ) -> y e. dom ( RR _D G ) ) |
| 57 | 25 56 | eqelssd | |- ( ph -> dom ( RR _D G ) = ( A (,) B ) ) |
| 58 | df-fn | |- ( ( RR _D G ) Fn ( A (,) B ) <-> ( Fun ( RR _D G ) /\ dom ( RR _D G ) = ( A (,) B ) ) ) |
|
| 59 | 9 57 58 | sylanbrc | |- ( ph -> ( RR _D G ) Fn ( A (,) B ) ) |
| 60 | 16 | ffnd | |- ( ph -> F Fn ( A (,) B ) ) |
| 61 | 9 | adantr | |- ( ( ph /\ y e. ( A (,) B ) ) -> Fun ( RR _D G ) ) |
| 62 | funbrfv | |- ( Fun ( RR _D G ) -> ( y ( RR _D G ) ( F ` y ) -> ( ( RR _D G ) ` y ) = ( F ` y ) ) ) |
|
| 63 | 61 52 62 | sylc | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( RR _D G ) ` y ) = ( F ` y ) ) |
| 64 | 59 60 63 | eqfnfvd | |- ( ph -> ( RR _D G ) = F ) |