This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fseqen . (Contributed by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fseqenlem.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| fseqenlem.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| fseqenlem.f | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) | ||
| fseqenlem.g | ⊢ 𝐺 = seqω ( ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) , { 〈 ∅ , 𝐵 〉 } ) | ||
| Assertion | fseqenlem1 | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ω ) → ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fseqenlem.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | fseqenlem.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 3 | fseqenlem.f | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) | |
| 4 | fseqenlem.g | ⊢ 𝐺 = seqω ( ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) , { 〈 ∅ , 𝐵 〉 } ) | |
| 5 | fveq2 | ⊢ ( 𝑦 = 𝐶 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝐶 ) ) | |
| 6 | f1eq1 | ⊢ ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝐶 ) → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑦 = 𝐶 → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
| 8 | oveq2 | ⊢ ( 𝑦 = 𝐶 → ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m 𝐶 ) ) | |
| 9 | f1eq2 | ⊢ ( ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m 𝐶 ) → ( ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝑦 = 𝐶 → ( ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) ) |
| 11 | 7 10 | bitrd | ⊢ ( 𝑦 = 𝐶 → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑦 = 𝐶 → ( ( 𝜑 → ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ↔ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑦 = ∅ → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ ∅ ) ) | |
| 14 | snex | ⊢ { 〈 ∅ , 𝐵 〉 } ∈ V | |
| 15 | 4 | seqom0g | ⊢ ( { 〈 ∅ , 𝐵 〉 } ∈ V → ( 𝐺 ‘ ∅ ) = { 〈 ∅ , 𝐵 〉 } ) |
| 16 | 14 15 | ax-mp | ⊢ ( 𝐺 ‘ ∅ ) = { 〈 ∅ , 𝐵 〉 } |
| 17 | 13 16 | eqtrdi | ⊢ ( 𝑦 = ∅ → ( 𝐺 ‘ 𝑦 ) = { 〈 ∅ , 𝐵 〉 } ) |
| 18 | f1eq1 | ⊢ ( ( 𝐺 ‘ 𝑦 ) = { 〈 ∅ , 𝐵 〉 } → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝑦 = ∅ → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
| 20 | oveq2 | ⊢ ( 𝑦 = ∅ → ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m ∅ ) ) | |
| 21 | f1eq2 | ⊢ ( ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m ∅ ) → ( { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m ∅ ) –1-1→ 𝐴 ) ) | |
| 22 | 20 21 | syl | ⊢ ( 𝑦 = ∅ → ( { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m ∅ ) –1-1→ 𝐴 ) ) |
| 23 | 19 22 | bitrd | ⊢ ( 𝑦 = ∅ → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m ∅ ) –1-1→ 𝐴 ) ) |
| 24 | fveq2 | ⊢ ( 𝑦 = 𝑚 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑚 ) ) | |
| 25 | f1eq1 | ⊢ ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑚 ) → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) | |
| 26 | 24 25 | syl | ⊢ ( 𝑦 = 𝑚 → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
| 27 | oveq2 | ⊢ ( 𝑦 = 𝑚 → ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m 𝑚 ) ) | |
| 28 | f1eq2 | ⊢ ( ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m 𝑚 ) → ( ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) | |
| 29 | 27 28 | syl | ⊢ ( 𝑦 = 𝑚 → ( ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) |
| 30 | 26 29 | bitrd | ⊢ ( 𝑦 = 𝑚 → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) |
| 31 | fveq2 | ⊢ ( 𝑦 = suc 𝑚 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ suc 𝑚 ) ) | |
| 32 | f1eq1 | ⊢ ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ suc 𝑚 ) → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) | |
| 33 | 31 32 | syl | ⊢ ( 𝑦 = suc 𝑚 → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
| 34 | oveq2 | ⊢ ( 𝑦 = suc 𝑚 → ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m suc 𝑚 ) ) | |
| 35 | f1eq2 | ⊢ ( ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m suc 𝑚 ) → ( ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ) ) | |
| 36 | 34 35 | syl | ⊢ ( 𝑦 = suc 𝑚 → ( ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ) ) |
| 37 | 33 36 | bitrd | ⊢ ( 𝑦 = suc 𝑚 → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ) ) |
| 38 | 0ex | ⊢ ∅ ∈ V | |
| 39 | f1osng | ⊢ ( ( ∅ ∈ V ∧ 𝐵 ∈ 𝐴 ) → { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1-onto→ { 𝐵 } ) | |
| 40 | 38 2 39 | sylancr | ⊢ ( 𝜑 → { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1-onto→ { 𝐵 } ) |
| 41 | f1of1 | ⊢ ( { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1-onto→ { 𝐵 } → { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ { 𝐵 } ) | |
| 42 | 40 41 | syl | ⊢ ( 𝜑 → { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ { 𝐵 } ) |
| 43 | 2 | snssd | ⊢ ( 𝜑 → { 𝐵 } ⊆ 𝐴 ) |
| 44 | f1ss | ⊢ ( ( { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ { 𝐵 } ∧ { 𝐵 } ⊆ 𝐴 ) → { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ 𝐴 ) | |
| 45 | 42 43 44 | syl2anc | ⊢ ( 𝜑 → { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ 𝐴 ) |
| 46 | map0e | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ↑m ∅ ) = 1o ) | |
| 47 | 1 46 | syl | ⊢ ( 𝜑 → ( 𝐴 ↑m ∅ ) = 1o ) |
| 48 | df1o2 | ⊢ 1o = { ∅ } | |
| 49 | 47 48 | eqtrdi | ⊢ ( 𝜑 → ( 𝐴 ↑m ∅ ) = { ∅ } ) |
| 50 | f1eq2 | ⊢ ( ( 𝐴 ↑m ∅ ) = { ∅ } → ( { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m ∅ ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ 𝐴 ) ) | |
| 51 | 49 50 | syl | ⊢ ( 𝜑 → ( { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m ∅ ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ 𝐴 ) ) |
| 52 | 45 51 | mpbird | ⊢ ( 𝜑 → { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m ∅ ) –1-1→ 𝐴 ) |
| 53 | 4 | seqomsuc | ⊢ ( 𝑚 ∈ ω → ( 𝐺 ‘ suc 𝑚 ) = ( 𝑚 ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) ( 𝐺 ‘ 𝑚 ) ) ) |
| 54 | 53 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) → ( 𝐺 ‘ suc 𝑚 ) = ( 𝑚 ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) ( 𝐺 ‘ 𝑚 ) ) ) |
| 55 | vex | ⊢ 𝑚 ∈ V | |
| 56 | fvex | ⊢ ( 𝐺 ‘ 𝑚 ) ∈ V | |
| 57 | reseq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ↾ 𝑎 ) = ( 𝑧 ↾ 𝑎 ) ) | |
| 58 | 57 | fveq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) = ( 𝑏 ‘ ( 𝑧 ↾ 𝑎 ) ) ) |
| 59 | fveq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ‘ 𝑎 ) = ( 𝑧 ‘ 𝑎 ) ) | |
| 60 | 58 59 | oveq12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) = ( ( 𝑏 ‘ ( 𝑧 ↾ 𝑎 ) ) 𝐹 ( 𝑧 ‘ 𝑎 ) ) ) |
| 61 | 60 | cbvmptv | ⊢ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑧 ↾ 𝑎 ) ) 𝐹 ( 𝑧 ‘ 𝑎 ) ) ) |
| 62 | suceq | ⊢ ( 𝑎 = 𝑚 → suc 𝑎 = suc 𝑚 ) | |
| 63 | 62 | adantr | ⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → suc 𝑎 = suc 𝑚 ) |
| 64 | 63 | oveq2d | ⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( 𝐴 ↑m suc 𝑎 ) = ( 𝐴 ↑m suc 𝑚 ) ) |
| 65 | simpr | ⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → 𝑏 = ( 𝐺 ‘ 𝑚 ) ) | |
| 66 | reseq2 | ⊢ ( 𝑎 = 𝑚 → ( 𝑧 ↾ 𝑎 ) = ( 𝑧 ↾ 𝑚 ) ) | |
| 67 | 66 | adantr | ⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( 𝑧 ↾ 𝑎 ) = ( 𝑧 ↾ 𝑚 ) ) |
| 68 | 65 67 | fveq12d | ⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( 𝑏 ‘ ( 𝑧 ↾ 𝑎 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) ) |
| 69 | simpl | ⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → 𝑎 = 𝑚 ) | |
| 70 | 69 | fveq2d | ⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( 𝑧 ‘ 𝑎 ) = ( 𝑧 ‘ 𝑚 ) ) |
| 71 | 68 70 | oveq12d | ⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( ( 𝑏 ‘ ( 𝑧 ↾ 𝑎 ) ) 𝐹 ( 𝑧 ‘ 𝑎 ) ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) |
| 72 | 64 71 | mpteq12dv | ⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑧 ↾ 𝑎 ) ) 𝐹 ( 𝑧 ‘ 𝑎 ) ) ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ) |
| 73 | 61 72 | eqtrid | ⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ) |
| 74 | nfcv | ⊢ Ⅎ 𝑎 ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) | |
| 75 | nfcv | ⊢ Ⅎ 𝑏 ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) | |
| 76 | nfcv | ⊢ Ⅎ 𝑛 ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) | |
| 77 | nfcv | ⊢ Ⅎ 𝑓 ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) | |
| 78 | suceq | ⊢ ( 𝑛 = 𝑎 → suc 𝑛 = suc 𝑎 ) | |
| 79 | 78 | adantr | ⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → suc 𝑛 = suc 𝑎 ) |
| 80 | 79 | oveq2d | ⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → ( 𝐴 ↑m suc 𝑛 ) = ( 𝐴 ↑m suc 𝑎 ) ) |
| 81 | simpr | ⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → 𝑓 = 𝑏 ) | |
| 82 | reseq2 | ⊢ ( 𝑛 = 𝑎 → ( 𝑥 ↾ 𝑛 ) = ( 𝑥 ↾ 𝑎 ) ) | |
| 83 | 82 | adantr | ⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → ( 𝑥 ↾ 𝑛 ) = ( 𝑥 ↾ 𝑎 ) ) |
| 84 | 81 83 | fveq12d | ⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) = ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) ) |
| 85 | simpl | ⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → 𝑛 = 𝑎 ) | |
| 86 | 85 | fveq2d | ⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → ( 𝑥 ‘ 𝑛 ) = ( 𝑥 ‘ 𝑎 ) ) |
| 87 | 84 86 | oveq12d | ⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) = ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) |
| 88 | 80 87 | mpteq12dv | ⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) = ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) ) |
| 89 | 74 75 76 77 88 | cbvmpo | ⊢ ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) ) |
| 90 | ovex | ⊢ ( 𝐴 ↑m suc 𝑚 ) ∈ V | |
| 91 | 90 | mptex | ⊢ ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ∈ V |
| 92 | 73 89 91 | ovmpoa | ⊢ ( ( 𝑚 ∈ V ∧ ( 𝐺 ‘ 𝑚 ) ∈ V ) → ( 𝑚 ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) ( 𝐺 ‘ 𝑚 ) ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ) |
| 93 | 55 56 92 | mp2an | ⊢ ( 𝑚 ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) ( 𝐺 ‘ 𝑚 ) ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) |
| 94 | 54 93 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) → ( 𝐺 ‘ suc 𝑚 ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ) |
| 95 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |
| 96 | f1of | ⊢ ( 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 → 𝐹 : ( 𝐴 × 𝐴 ) ⟶ 𝐴 ) | |
| 97 | 95 96 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → 𝐹 : ( 𝐴 × 𝐴 ) ⟶ 𝐴 ) |
| 98 | f1f | ⊢ ( ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) ⟶ 𝐴 ) | |
| 99 | 98 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) → ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) ⟶ 𝐴 ) |
| 100 | 99 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) ⟶ 𝐴 ) |
| 101 | elmapi | ⊢ ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) → 𝑧 : suc 𝑚 ⟶ 𝐴 ) | |
| 102 | 101 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → 𝑧 : suc 𝑚 ⟶ 𝐴 ) |
| 103 | sssucid | ⊢ 𝑚 ⊆ suc 𝑚 | |
| 104 | fssres | ⊢ ( ( 𝑧 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ⊆ suc 𝑚 ) → ( 𝑧 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) | |
| 105 | 102 103 104 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( 𝑧 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) |
| 106 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → 𝐴 ∈ 𝑉 ) |
| 107 | elmapg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑚 ∈ V ) → ( ( 𝑧 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ↔ ( 𝑧 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) ) | |
| 108 | 106 55 107 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( ( 𝑧 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ↔ ( 𝑧 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) ) |
| 109 | 105 108 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( 𝑧 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ) |
| 110 | 100 109 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) ∈ 𝐴 ) |
| 111 | 55 | sucid | ⊢ 𝑚 ∈ suc 𝑚 |
| 112 | ffvelcdm | ⊢ ( ( 𝑧 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ suc 𝑚 ) → ( 𝑧 ‘ 𝑚 ) ∈ 𝐴 ) | |
| 113 | 102 111 112 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( 𝑧 ‘ 𝑚 ) ∈ 𝐴 ) |
| 114 | 97 110 113 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ∈ 𝐴 ) |
| 115 | 94 114 | fmpt3d | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) → ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) ⟶ 𝐴 ) |
| 116 | elmapi | ⊢ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) → 𝑎 : suc 𝑚 ⟶ 𝐴 ) | |
| 117 | 116 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝑎 : suc 𝑚 ⟶ 𝐴 ) |
| 118 | 117 | ffnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝑎 Fn suc 𝑚 ) |
| 119 | elmapi | ⊢ ( 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) → 𝑏 : suc 𝑚 ⟶ 𝐴 ) | |
| 120 | 119 | ad2antll | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝑏 : suc 𝑚 ⟶ 𝐴 ) |
| 121 | 120 | ffnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝑏 Fn suc 𝑚 ) |
| 122 | 103 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝑚 ⊆ suc 𝑚 ) |
| 123 | fvreseq | ⊢ ( ( ( 𝑎 Fn suc 𝑚 ∧ 𝑏 Fn suc 𝑚 ) ∧ 𝑚 ⊆ suc 𝑚 ) → ( ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) | |
| 124 | 118 121 122 123 | syl21anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 125 | fveq2 | ⊢ ( 𝑥 = 𝑚 → ( 𝑎 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑚 ) ) | |
| 126 | fveq2 | ⊢ ( 𝑥 = 𝑚 → ( 𝑏 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑚 ) ) | |
| 127 | 125 126 | eqeq12d | ⊢ ( 𝑥 = 𝑚 → ( ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ) |
| 128 | 55 127 | ralsn | ⊢ ( ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) |
| 129 | 128 | bicomi | ⊢ ( ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ↔ ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) |
| 130 | 129 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ↔ ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 131 | 124 130 | anbi12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ∧ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ↔ ( ∀ 𝑥 ∈ 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) ) |
| 132 | 94 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝐺 ‘ suc 𝑚 ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ) |
| 133 | 132 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ‘ 𝑎 ) ) |
| 134 | reseq1 | ⊢ ( 𝑧 = 𝑎 → ( 𝑧 ↾ 𝑚 ) = ( 𝑎 ↾ 𝑚 ) ) | |
| 135 | 134 | fveq2d | ⊢ ( 𝑧 = 𝑎 → ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) ) |
| 136 | fveq1 | ⊢ ( 𝑧 = 𝑎 → ( 𝑧 ‘ 𝑚 ) = ( 𝑎 ‘ 𝑚 ) ) | |
| 137 | 135 136 | oveq12d | ⊢ ( 𝑧 = 𝑎 → ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) 𝐹 ( 𝑎 ‘ 𝑚 ) ) ) |
| 138 | eqid | ⊢ ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) | |
| 139 | ovex | ⊢ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) 𝐹 ( 𝑎 ‘ 𝑚 ) ) ∈ V | |
| 140 | 137 138 139 | fvmpt | ⊢ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) → ( ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ‘ 𝑎 ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) 𝐹 ( 𝑎 ‘ 𝑚 ) ) ) |
| 141 | 140 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ‘ 𝑎 ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) 𝐹 ( 𝑎 ‘ 𝑚 ) ) ) |
| 142 | 133 141 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) 𝐹 ( 𝑎 ‘ 𝑚 ) ) ) |
| 143 | df-ov | ⊢ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) 𝐹 ( 𝑎 ‘ 𝑚 ) ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ) | |
| 144 | 142 143 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ) ) |
| 145 | 132 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ‘ 𝑏 ) ) |
| 146 | reseq1 | ⊢ ( 𝑧 = 𝑏 → ( 𝑧 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ) | |
| 147 | 146 | fveq2d | ⊢ ( 𝑧 = 𝑏 → ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ) |
| 148 | fveq1 | ⊢ ( 𝑧 = 𝑏 → ( 𝑧 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) | |
| 149 | 147 148 | oveq12d | ⊢ ( 𝑧 = 𝑏 → ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) 𝐹 ( 𝑏 ‘ 𝑚 ) ) ) |
| 150 | ovex | ⊢ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) 𝐹 ( 𝑏 ‘ 𝑚 ) ) ∈ V | |
| 151 | 149 138 150 | fvmpt | ⊢ ( 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) → ( ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ‘ 𝑏 ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) 𝐹 ( 𝑏 ‘ 𝑚 ) ) ) |
| 152 | 151 | ad2antll | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ‘ 𝑏 ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) 𝐹 ( 𝑏 ‘ 𝑚 ) ) ) |
| 153 | 145 152 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) 𝐹 ( 𝑏 ‘ 𝑚 ) ) ) |
| 154 | df-ov | ⊢ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) 𝐹 ( 𝑏 ‘ 𝑚 ) ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) | |
| 155 | 153 154 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ) |
| 156 | 144 155 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) ↔ ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ) ) |
| 157 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |
| 158 | f1of1 | ⊢ ( 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 → 𝐹 : ( 𝐴 × 𝐴 ) –1-1→ 𝐴 ) | |
| 159 | 157 158 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝐹 : ( 𝐴 × 𝐴 ) –1-1→ 𝐴 ) |
| 160 | 99 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) ⟶ 𝐴 ) |
| 161 | fssres | ⊢ ( ( 𝑎 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ⊆ suc 𝑚 ) → ( 𝑎 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) | |
| 162 | 117 103 161 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑎 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) |
| 163 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝐴 ∈ 𝑉 ) |
| 164 | elmapg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑚 ∈ V ) → ( ( 𝑎 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ↔ ( 𝑎 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) ) | |
| 165 | 163 55 164 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝑎 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ↔ ( 𝑎 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) ) |
| 166 | 162 165 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑎 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ) |
| 167 | 160 166 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) ∈ 𝐴 ) |
| 168 | ffvelcdm | ⊢ ( ( 𝑎 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ suc 𝑚 ) → ( 𝑎 ‘ 𝑚 ) ∈ 𝐴 ) | |
| 169 | 117 111 168 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑎 ‘ 𝑚 ) ∈ 𝐴 ) |
| 170 | 167 169 | opelxpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ∈ ( 𝐴 × 𝐴 ) ) |
| 171 | fssres | ⊢ ( ( 𝑏 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ⊆ suc 𝑚 ) → ( 𝑏 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) | |
| 172 | 120 103 171 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑏 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) |
| 173 | elmapg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑚 ∈ V ) → ( ( 𝑏 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ↔ ( 𝑏 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) ) | |
| 174 | 163 55 173 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝑏 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ↔ ( 𝑏 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) ) |
| 175 | 172 174 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑏 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ) |
| 176 | 160 175 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ∈ 𝐴 ) |
| 177 | ffvelcdm | ⊢ ( ( 𝑏 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ suc 𝑚 ) → ( 𝑏 ‘ 𝑚 ) ∈ 𝐴 ) | |
| 178 | 120 111 177 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑏 ‘ 𝑚 ) ∈ 𝐴 ) |
| 179 | 176 178 | opelxpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ∈ ( 𝐴 × 𝐴 ) ) |
| 180 | f1fveq | ⊢ ( ( 𝐹 : ( 𝐴 × 𝐴 ) –1-1→ 𝐴 ∧ ( 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ∈ ( 𝐴 × 𝐴 ) ∧ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ∈ ( 𝐴 × 𝐴 ) ) ) → ( ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ↔ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 = 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ) | |
| 181 | 159 170 179 180 | syl12anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ↔ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 = 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ) |
| 182 | fvex | ⊢ ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) ∈ V | |
| 183 | fvex | ⊢ ( 𝑎 ‘ 𝑚 ) ∈ V | |
| 184 | 182 183 | opth | ⊢ ( 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 = 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ↔ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ∧ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ) |
| 185 | 181 184 | bitrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ↔ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ∧ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ) ) |
| 186 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) | |
| 187 | f1fveq | ⊢ ( ( ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ∧ ( ( 𝑎 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ∧ ( 𝑏 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ) ) → ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ↔ ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ) ) | |
| 188 | 186 166 175 187 | syl12anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ↔ ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ) ) |
| 189 | 188 | anbi1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ∧ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ↔ ( ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ∧ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ) ) |
| 190 | 156 185 189 | 3bitrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) ↔ ( ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ∧ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ) ) |
| 191 | eqfnfv | ⊢ ( ( 𝑎 Fn suc 𝑚 ∧ 𝑏 Fn suc 𝑚 ) → ( 𝑎 = 𝑏 ↔ ∀ 𝑥 ∈ suc 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) | |
| 192 | 118 121 191 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑎 = 𝑏 ↔ ∀ 𝑥 ∈ suc 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 193 | df-suc | ⊢ suc 𝑚 = ( 𝑚 ∪ { 𝑚 } ) | |
| 194 | 193 | raleqi | ⊢ ( ∀ 𝑥 ∈ suc 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑚 } ) ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) |
| 195 | ralunb | ⊢ ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑚 } ) ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ( ∀ 𝑥 ∈ 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) | |
| 196 | 194 195 | bitri | ⊢ ( ∀ 𝑥 ∈ suc 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ( ∀ 𝑥 ∈ 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 197 | 192 196 | bitrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑎 = 𝑏 ↔ ( ∀ 𝑥 ∈ 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) ) |
| 198 | 131 190 197 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
| 199 | 198 | biimpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 200 | 199 | ralrimivva | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) → ∀ 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∀ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ( ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 201 | dff13 | ⊢ ( ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ↔ ( ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) ⟶ 𝐴 ∧ ∀ 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∀ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ( ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) | |
| 202 | 115 200 201 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) → ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ) |
| 203 | 202 | expr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ω ) → ( ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 → ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ) ) |
| 204 | 203 | expcom | ⊢ ( 𝑚 ∈ ω → ( 𝜑 → ( ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 → ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ) ) ) |
| 205 | 23 30 37 52 204 | finds2 | ⊢ ( 𝑦 ∈ ω → ( 𝜑 → ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
| 206 | 12 205 | vtoclga | ⊢ ( 𝐶 ∈ ω → ( 𝜑 → ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) ) |
| 207 | 206 | impcom | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ω ) → ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) |