This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fseqen . (Contributed by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fseqenlem.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| fseqenlem.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| fseqenlem.f | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) | ||
| fseqenlem.g | ⊢ 𝐺 = seqω ( ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) , { 〈 ∅ , 𝐵 〉 } ) | ||
| fseqenlem.k | ⊢ 𝐾 = ( 𝑦 ∈ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ↦ 〈 dom 𝑦 , ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) 〉 ) | ||
| Assertion | fseqenlem2 | ⊢ ( 𝜑 → 𝐾 : ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) –1-1→ ( ω × 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fseqenlem.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | fseqenlem.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 3 | fseqenlem.f | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) | |
| 4 | fseqenlem.g | ⊢ 𝐺 = seqω ( ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) , { 〈 ∅ , 𝐵 〉 } ) | |
| 5 | fseqenlem.k | ⊢ 𝐾 = ( 𝑦 ∈ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ↦ 〈 dom 𝑦 , ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) 〉 ) | |
| 6 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ↔ ∃ 𝑘 ∈ ω 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) | |
| 7 | elmapi | ⊢ ( 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) → 𝑦 : 𝑘 ⟶ 𝐴 ) | |
| 8 | 7 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → 𝑦 : 𝑘 ⟶ 𝐴 ) |
| 9 | 8 | fdmd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → dom 𝑦 = 𝑘 ) |
| 10 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → 𝑘 ∈ ω ) | |
| 11 | 9 10 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → dom 𝑦 ∈ ω ) |
| 12 | 9 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → ( 𝐺 ‘ dom 𝑦 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 13 | 12 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) = ( ( 𝐺 ‘ 𝑘 ) ‘ 𝑦 ) ) |
| 14 | 1 2 3 4 | fseqenlem1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ω ) → ( 𝐺 ‘ 𝑘 ) : ( 𝐴 ↑m 𝑘 ) –1-1→ 𝐴 ) |
| 15 | 14 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → ( 𝐺 ‘ 𝑘 ) : ( 𝐴 ↑m 𝑘 ) –1-1→ 𝐴 ) |
| 16 | f1f | ⊢ ( ( 𝐺 ‘ 𝑘 ) : ( 𝐴 ↑m 𝑘 ) –1-1→ 𝐴 → ( 𝐺 ‘ 𝑘 ) : ( 𝐴 ↑m 𝑘 ) ⟶ 𝐴 ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → ( 𝐺 ‘ 𝑘 ) : ( 𝐴 ↑m 𝑘 ) ⟶ 𝐴 ) |
| 18 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) | |
| 19 | 17 18 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → ( ( 𝐺 ‘ 𝑘 ) ‘ 𝑦 ) ∈ 𝐴 ) |
| 20 | 13 19 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) ∈ 𝐴 ) |
| 21 | 11 20 | opelxpd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → 〈 dom 𝑦 , ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) 〉 ∈ ( ω × 𝐴 ) ) |
| 22 | 21 | rexlimdvaa | ⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ω 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) → 〈 dom 𝑦 , ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) 〉 ∈ ( ω × 𝐴 ) ) ) |
| 23 | 6 22 | biimtrid | ⊢ ( 𝜑 → ( 𝑦 ∈ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) → 〈 dom 𝑦 , ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) 〉 ∈ ( ω × 𝐴 ) ) ) |
| 24 | 23 | imp | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ) → 〈 dom 𝑦 , ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) 〉 ∈ ( ω × 𝐴 ) ) |
| 25 | 24 5 | fmptd | ⊢ ( 𝜑 → 𝐾 : ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ⟶ ( ω × 𝐴 ) ) |
| 26 | ffun | ⊢ ( 𝐾 : ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ⟶ ( ω × 𝐴 ) → Fun 𝐾 ) | |
| 27 | funbrfv2b | ⊢ ( Fun 𝐾 → ( 𝑧 𝐾 𝑤 ↔ ( 𝑧 ∈ dom 𝐾 ∧ ( 𝐾 ‘ 𝑧 ) = 𝑤 ) ) ) | |
| 28 | 25 26 27 | 3syl | ⊢ ( 𝜑 → ( 𝑧 𝐾 𝑤 ↔ ( 𝑧 ∈ dom 𝐾 ∧ ( 𝐾 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 29 | 28 | simplbda | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( 𝐾 ‘ 𝑧 ) = 𝑤 ) |
| 30 | 28 | simprbda | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → 𝑧 ∈ dom 𝐾 ) |
| 31 | 25 | fdmd | ⊢ ( 𝜑 → dom 𝐾 = ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → dom 𝐾 = ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ) |
| 33 | 30 32 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → 𝑧 ∈ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ) |
| 34 | dmeq | ⊢ ( 𝑦 = 𝑧 → dom 𝑦 = dom 𝑧 ) | |
| 35 | 34 | fveq2d | ⊢ ( 𝑦 = 𝑧 → ( 𝐺 ‘ dom 𝑦 ) = ( 𝐺 ‘ dom 𝑧 ) ) |
| 36 | id | ⊢ ( 𝑦 = 𝑧 → 𝑦 = 𝑧 ) | |
| 37 | 35 36 | fveq12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) = ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) ) |
| 38 | 34 37 | opeq12d | ⊢ ( 𝑦 = 𝑧 → 〈 dom 𝑦 , ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) 〉 = 〈 dom 𝑧 , ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) 〉 ) |
| 39 | opex | ⊢ 〈 dom 𝑧 , ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) 〉 ∈ V | |
| 40 | 38 5 39 | fvmpt | ⊢ ( 𝑧 ∈ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) → ( 𝐾 ‘ 𝑧 ) = 〈 dom 𝑧 , ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) 〉 ) |
| 41 | 33 40 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( 𝐾 ‘ 𝑧 ) = 〈 dom 𝑧 , ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) 〉 ) |
| 42 | 29 41 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → 𝑤 = 〈 dom 𝑧 , ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) 〉 ) |
| 43 | 42 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( 1st ‘ 𝑤 ) = ( 1st ‘ 〈 dom 𝑧 , ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) 〉 ) ) |
| 44 | vex | ⊢ 𝑧 ∈ V | |
| 45 | 44 | dmex | ⊢ dom 𝑧 ∈ V |
| 46 | fvex | ⊢ ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) ∈ V | |
| 47 | 45 46 | op1st | ⊢ ( 1st ‘ 〈 dom 𝑧 , ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) 〉 ) = dom 𝑧 |
| 48 | 43 47 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( 1st ‘ 𝑤 ) = dom 𝑧 ) |
| 49 | 48 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( 𝐺 ‘ ( 1st ‘ 𝑤 ) ) = ( 𝐺 ‘ dom 𝑧 ) ) |
| 50 | 49 | cnveqd | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ◡ ( 𝐺 ‘ ( 1st ‘ 𝑤 ) ) = ◡ ( 𝐺 ‘ dom 𝑧 ) ) |
| 51 | 42 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 〈 dom 𝑧 , ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) 〉 ) ) |
| 52 | 45 46 | op2nd | ⊢ ( 2nd ‘ 〈 dom 𝑧 , ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) 〉 ) = ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) |
| 53 | 51 52 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( 2nd ‘ 𝑤 ) = ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) ) |
| 54 | 50 53 | fveq12d | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( ◡ ( 𝐺 ‘ ( 1st ‘ 𝑤 ) ) ‘ ( 2nd ‘ 𝑤 ) ) = ( ◡ ( 𝐺 ‘ dom 𝑧 ) ‘ ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) ) ) |
| 55 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ↔ ∃ 𝑘 ∈ ω 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) | |
| 56 | elmapi | ⊢ ( 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) → 𝑧 : 𝑘 ⟶ 𝐴 ) | |
| 57 | 56 | adantl | ⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) → 𝑧 : 𝑘 ⟶ 𝐴 ) |
| 58 | 57 | fdmd | ⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) → dom 𝑧 = 𝑘 ) |
| 59 | simpl | ⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) → 𝑘 ∈ ω ) | |
| 60 | 58 59 | eqeltrd | ⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) → dom 𝑧 ∈ ω ) |
| 61 | simpr | ⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) → 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) | |
| 62 | 58 | oveq2d | ⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) → ( 𝐴 ↑m dom 𝑧 ) = ( 𝐴 ↑m 𝑘 ) ) |
| 63 | 61 62 | eleqtrrd | ⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) → 𝑧 ∈ ( 𝐴 ↑m dom 𝑧 ) ) |
| 64 | 60 63 | jca | ⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) → ( dom 𝑧 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m dom 𝑧 ) ) ) |
| 65 | 64 | rexlimiva | ⊢ ( ∃ 𝑘 ∈ ω 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) → ( dom 𝑧 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m dom 𝑧 ) ) ) |
| 66 | 55 65 | sylbi | ⊢ ( 𝑧 ∈ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) → ( dom 𝑧 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m dom 𝑧 ) ) ) |
| 67 | 33 66 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( dom 𝑧 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m dom 𝑧 ) ) ) |
| 68 | 67 | simpld | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → dom 𝑧 ∈ ω ) |
| 69 | 1 2 3 4 | fseqenlem1 | ⊢ ( ( 𝜑 ∧ dom 𝑧 ∈ ω ) → ( 𝐺 ‘ dom 𝑧 ) : ( 𝐴 ↑m dom 𝑧 ) –1-1→ 𝐴 ) |
| 70 | 68 69 | syldan | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( 𝐺 ‘ dom 𝑧 ) : ( 𝐴 ↑m dom 𝑧 ) –1-1→ 𝐴 ) |
| 71 | f1f1orn | ⊢ ( ( 𝐺 ‘ dom 𝑧 ) : ( 𝐴 ↑m dom 𝑧 ) –1-1→ 𝐴 → ( 𝐺 ‘ dom 𝑧 ) : ( 𝐴 ↑m dom 𝑧 ) –1-1-onto→ ran ( 𝐺 ‘ dom 𝑧 ) ) | |
| 72 | 70 71 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( 𝐺 ‘ dom 𝑧 ) : ( 𝐴 ↑m dom 𝑧 ) –1-1-onto→ ran ( 𝐺 ‘ dom 𝑧 ) ) |
| 73 | 67 | simprd | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → 𝑧 ∈ ( 𝐴 ↑m dom 𝑧 ) ) |
| 74 | f1ocnvfv1 | ⊢ ( ( ( 𝐺 ‘ dom 𝑧 ) : ( 𝐴 ↑m dom 𝑧 ) –1-1-onto→ ran ( 𝐺 ‘ dom 𝑧 ) ∧ 𝑧 ∈ ( 𝐴 ↑m dom 𝑧 ) ) → ( ◡ ( 𝐺 ‘ dom 𝑧 ) ‘ ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) ) = 𝑧 ) | |
| 75 | 72 73 74 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( ◡ ( 𝐺 ‘ dom 𝑧 ) ‘ ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) ) = 𝑧 ) |
| 76 | 54 75 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → 𝑧 = ( ◡ ( 𝐺 ‘ ( 1st ‘ 𝑤 ) ) ‘ ( 2nd ‘ 𝑤 ) ) ) |
| 77 | 76 | ex | ⊢ ( 𝜑 → ( 𝑧 𝐾 𝑤 → 𝑧 = ( ◡ ( 𝐺 ‘ ( 1st ‘ 𝑤 ) ) ‘ ( 2nd ‘ 𝑤 ) ) ) ) |
| 78 | 77 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑧 ( 𝑧 𝐾 𝑤 → 𝑧 = ( ◡ ( 𝐺 ‘ ( 1st ‘ 𝑤 ) ) ‘ ( 2nd ‘ 𝑤 ) ) ) ) |
| 79 | mo2icl | ⊢ ( ∀ 𝑧 ( 𝑧 𝐾 𝑤 → 𝑧 = ( ◡ ( 𝐺 ‘ ( 1st ‘ 𝑤 ) ) ‘ ( 2nd ‘ 𝑤 ) ) ) → ∃* 𝑧 𝑧 𝐾 𝑤 ) | |
| 80 | 78 79 | syl | ⊢ ( 𝜑 → ∃* 𝑧 𝑧 𝐾 𝑤 ) |
| 81 | 80 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑤 ∃* 𝑧 𝑧 𝐾 𝑤 ) |
| 82 | dff12 | ⊢ ( 𝐾 : ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) –1-1→ ( ω × 𝐴 ) ↔ ( 𝐾 : ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ⟶ ( ω × 𝐴 ) ∧ ∀ 𝑤 ∃* 𝑧 𝑧 𝐾 𝑤 ) ) | |
| 83 | 25 81 82 | sylanbrc | ⊢ ( 𝜑 → 𝐾 : ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) –1-1→ ( ω × 𝐴 ) ) |