This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Schema for strong induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on any proper subset. The result is then proven to be true for all finite sets. (Contributed by Mario Carneiro, 13-Dec-2013) Avoid ax-pow . (Revised by BTernaryTau, 7-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | findcard3.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | |
| findcard3.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) | ||
| findcard3.3 | ⊢ ( 𝑦 ∈ Fin → ( ∀ 𝑥 ( 𝑥 ⊊ 𝑦 → 𝜑 ) → 𝜒 ) ) | ||
| Assertion | findcard3 | ⊢ ( 𝐴 ∈ Fin → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | findcard3.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | |
| 2 | findcard3.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) | |
| 3 | findcard3.3 | ⊢ ( 𝑦 ∈ Fin → ( ∀ 𝑥 ( 𝑥 ⊊ 𝑦 → 𝜑 ) → 𝜒 ) ) | |
| 4 | isfi | ⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑤 ∈ ω 𝐴 ≈ 𝑤 ) | |
| 5 | nnon | ⊢ ( 𝑤 ∈ ω → 𝑤 ∈ On ) | |
| 6 | eleq1w | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ ω ↔ 𝑧 ∈ ω ) ) | |
| 7 | breq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝑥 ≈ 𝑤 ↔ 𝑥 ≈ 𝑧 ) ) | |
| 8 | 7 | imbi1d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) |
| 9 | 8 | albidv | ⊢ ( 𝑤 = 𝑧 → ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) |
| 10 | 6 9 | imbi12d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ) ↔ ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) ) |
| 11 | rspe | ⊢ ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) → ∃ 𝑤 ∈ ω 𝑦 ≈ 𝑤 ) | |
| 12 | isfi | ⊢ ( 𝑦 ∈ Fin ↔ ∃ 𝑤 ∈ ω 𝑦 ≈ 𝑤 ) | |
| 13 | 11 12 | sylibr | ⊢ ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) → 𝑦 ∈ Fin ) |
| 14 | 19.21v | ⊢ ( ∀ 𝑥 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ↔ ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) | |
| 15 | 14 | ralbii | ⊢ ( ∀ 𝑧 ∈ 𝑤 ∀ 𝑥 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ↔ ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) |
| 16 | ralcom4 | ⊢ ( ∀ 𝑧 ∈ 𝑤 ∀ 𝑥 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ↔ ∀ 𝑥 ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) | |
| 17 | 15 16 | bitr3i | ⊢ ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ↔ ∀ 𝑥 ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) |
| 18 | pssss | ⊢ ( 𝑥 ⊊ 𝑦 → 𝑥 ⊆ 𝑦 ) | |
| 19 | ssfi | ⊢ ( ( 𝑦 ∈ Fin ∧ 𝑥 ⊆ 𝑦 ) → 𝑥 ∈ Fin ) | |
| 20 | isfi | ⊢ ( 𝑥 ∈ Fin ↔ ∃ 𝑧 ∈ ω 𝑥 ≈ 𝑧 ) | |
| 21 | 19 20 | sylib | ⊢ ( ( 𝑦 ∈ Fin ∧ 𝑥 ⊆ 𝑦 ) → ∃ 𝑧 ∈ ω 𝑥 ≈ 𝑧 ) |
| 22 | 13 18 21 | syl2an | ⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ∃ 𝑧 ∈ ω 𝑥 ≈ 𝑧 ) |
| 23 | simprl | ⊢ ( ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) ∧ ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) ) → 𝑧 ∈ ω ) | |
| 24 | nnfi | ⊢ ( 𝑧 ∈ ω → 𝑧 ∈ Fin ) | |
| 25 | ensymfib | ⊢ ( 𝑧 ∈ Fin → ( 𝑧 ≈ 𝑥 ↔ 𝑥 ≈ 𝑧 ) ) | |
| 26 | 24 25 | syl | ⊢ ( 𝑧 ∈ ω → ( 𝑧 ≈ 𝑥 ↔ 𝑥 ≈ 𝑧 ) ) |
| 27 | 26 | biimpar | ⊢ ( ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) → 𝑧 ≈ 𝑥 ) |
| 28 | 27 | adantl | ⊢ ( ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) ∧ ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) ) → 𝑧 ≈ 𝑥 ) |
| 29 | simplll | ⊢ ( ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) ∧ ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) ) → 𝑤 ∈ ω ) | |
| 30 | php3 | ⊢ ( ( 𝑦 ∈ Fin ∧ 𝑥 ⊊ 𝑦 ) → 𝑥 ≺ 𝑦 ) | |
| 31 | 13 30 | sylan | ⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → 𝑥 ≺ 𝑦 ) |
| 32 | 31 | adantr | ⊢ ( ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) ∧ ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) ) → 𝑥 ≺ 𝑦 ) |
| 33 | simpllr | ⊢ ( ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) ∧ ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) ) → 𝑦 ≈ 𝑤 ) | |
| 34 | endom | ⊢ ( 𝑦 ≈ 𝑤 → 𝑦 ≼ 𝑤 ) | |
| 35 | nnfi | ⊢ ( 𝑤 ∈ ω → 𝑤 ∈ Fin ) | |
| 36 | domfi | ⊢ ( ( 𝑤 ∈ Fin ∧ 𝑦 ≼ 𝑤 ) → 𝑦 ∈ Fin ) | |
| 37 | 35 36 | sylan | ⊢ ( ( 𝑤 ∈ ω ∧ 𝑦 ≼ 𝑤 ) → 𝑦 ∈ Fin ) |
| 38 | 37 | 3adant2 | ⊢ ( ( 𝑤 ∈ ω ∧ 𝑥 ≺ 𝑦 ∧ 𝑦 ≼ 𝑤 ) → 𝑦 ∈ Fin ) |
| 39 | sdomdom | ⊢ ( 𝑥 ≺ 𝑦 → 𝑥 ≼ 𝑦 ) | |
| 40 | domfi | ⊢ ( ( 𝑦 ∈ Fin ∧ 𝑥 ≼ 𝑦 ) → 𝑥 ∈ Fin ) | |
| 41 | 39 40 | sylan2 | ⊢ ( ( 𝑦 ∈ Fin ∧ 𝑥 ≺ 𝑦 ) → 𝑥 ∈ Fin ) |
| 42 | 41 | 3adant3 | ⊢ ( ( 𝑦 ∈ Fin ∧ 𝑥 ≺ 𝑦 ∧ 𝑦 ≼ 𝑤 ) → 𝑥 ∈ Fin ) |
| 43 | 38 42 | syld3an1 | ⊢ ( ( 𝑤 ∈ ω ∧ 𝑥 ≺ 𝑦 ∧ 𝑦 ≼ 𝑤 ) → 𝑥 ∈ Fin ) |
| 44 | sdomdomtrfi | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝑥 ≺ 𝑦 ∧ 𝑦 ≼ 𝑤 ) → 𝑥 ≺ 𝑤 ) | |
| 45 | 43 44 | syld3an1 | ⊢ ( ( 𝑤 ∈ ω ∧ 𝑥 ≺ 𝑦 ∧ 𝑦 ≼ 𝑤 ) → 𝑥 ≺ 𝑤 ) |
| 46 | 34 45 | syl3an3 | ⊢ ( ( 𝑤 ∈ ω ∧ 𝑥 ≺ 𝑦 ∧ 𝑦 ≈ 𝑤 ) → 𝑥 ≺ 𝑤 ) |
| 47 | 29 32 33 46 | syl3anc | ⊢ ( ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) ∧ ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) ) → 𝑥 ≺ 𝑤 ) |
| 48 | endom | ⊢ ( 𝑧 ≈ 𝑥 → 𝑧 ≼ 𝑥 ) | |
| 49 | domsdomtrfi | ⊢ ( ( 𝑧 ∈ Fin ∧ 𝑧 ≼ 𝑥 ∧ 𝑥 ≺ 𝑤 ) → 𝑧 ≺ 𝑤 ) | |
| 50 | 24 49 | syl3an1 | ⊢ ( ( 𝑧 ∈ ω ∧ 𝑧 ≼ 𝑥 ∧ 𝑥 ≺ 𝑤 ) → 𝑧 ≺ 𝑤 ) |
| 51 | 48 50 | syl3an2 | ⊢ ( ( 𝑧 ∈ ω ∧ 𝑧 ≈ 𝑥 ∧ 𝑥 ≺ 𝑤 ) → 𝑧 ≺ 𝑤 ) |
| 52 | 23 28 47 51 | syl3anc | ⊢ ( ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) ∧ ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) ) → 𝑧 ≺ 𝑤 ) |
| 53 | nnsdomo | ⊢ ( ( 𝑧 ∈ ω ∧ 𝑤 ∈ ω ) → ( 𝑧 ≺ 𝑤 ↔ 𝑧 ⊊ 𝑤 ) ) | |
| 54 | nnord | ⊢ ( 𝑧 ∈ ω → Ord 𝑧 ) | |
| 55 | nnord | ⊢ ( 𝑤 ∈ ω → Ord 𝑤 ) | |
| 56 | ordelpss | ⊢ ( ( Ord 𝑧 ∧ Ord 𝑤 ) → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ⊊ 𝑤 ) ) | |
| 57 | 54 55 56 | syl2an | ⊢ ( ( 𝑧 ∈ ω ∧ 𝑤 ∈ ω ) → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ⊊ 𝑤 ) ) |
| 58 | 53 57 | bitr4d | ⊢ ( ( 𝑧 ∈ ω ∧ 𝑤 ∈ ω ) → ( 𝑧 ≺ 𝑤 ↔ 𝑧 ∈ 𝑤 ) ) |
| 59 | 23 29 58 | syl2anc | ⊢ ( ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) ∧ ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) ) → ( 𝑧 ≺ 𝑤 ↔ 𝑧 ∈ 𝑤 ) ) |
| 60 | 52 59 | mpbid | ⊢ ( ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) ∧ ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) ) → 𝑧 ∈ 𝑤 ) |
| 61 | 60 | ex | ⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ( ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) → 𝑧 ∈ 𝑤 ) ) |
| 62 | simpr | ⊢ ( ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) → 𝑥 ≈ 𝑧 ) | |
| 63 | 61 62 | jca2 | ⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ( ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) → ( 𝑧 ∈ 𝑤 ∧ 𝑥 ≈ 𝑧 ) ) ) |
| 64 | 63 | reximdv2 | ⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ( ∃ 𝑧 ∈ ω 𝑥 ≈ 𝑧 → ∃ 𝑧 ∈ 𝑤 𝑥 ≈ 𝑧 ) ) |
| 65 | 22 64 | mpd | ⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ∃ 𝑧 ∈ 𝑤 𝑥 ≈ 𝑧 ) |
| 66 | r19.29 | ⊢ ( ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ∧ ∃ 𝑧 ∈ 𝑤 𝑥 ≈ 𝑧 ) → ∃ 𝑧 ∈ 𝑤 ( ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ∧ 𝑥 ≈ 𝑧 ) ) | |
| 67 | 66 | expcom | ⊢ ( ∃ 𝑧 ∈ 𝑤 𝑥 ≈ 𝑧 → ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → ∃ 𝑧 ∈ 𝑤 ( ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ∧ 𝑥 ≈ 𝑧 ) ) ) |
| 68 | 65 67 | syl | ⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → ∃ 𝑧 ∈ 𝑤 ( ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ∧ 𝑥 ≈ 𝑧 ) ) ) |
| 69 | ordom | ⊢ Ord ω | |
| 70 | ordelss | ⊢ ( ( Ord ω ∧ 𝑤 ∈ ω ) → 𝑤 ⊆ ω ) | |
| 71 | 69 70 | mpan | ⊢ ( 𝑤 ∈ ω → 𝑤 ⊆ ω ) |
| 72 | 71 | ad2antrr | ⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → 𝑤 ⊆ ω ) |
| 73 | 72 | sseld | ⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ( 𝑧 ∈ 𝑤 → 𝑧 ∈ ω ) ) |
| 74 | pm2.27 | ⊢ ( 𝑧 ∈ ω → ( ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) | |
| 75 | 74 | impd | ⊢ ( 𝑧 ∈ ω → ( ( ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ∧ 𝑥 ≈ 𝑧 ) → 𝜑 ) ) |
| 76 | 73 75 | syl6 | ⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ( 𝑧 ∈ 𝑤 → ( ( ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ∧ 𝑥 ≈ 𝑧 ) → 𝜑 ) ) ) |
| 77 | 76 | rexlimdv | ⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ( ∃ 𝑧 ∈ 𝑤 ( ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ∧ 𝑥 ≈ 𝑧 ) → 𝜑 ) ) |
| 78 | 68 77 | syld | ⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → 𝜑 ) ) |
| 79 | 78 | ex | ⊢ ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) → ( 𝑥 ⊊ 𝑦 → ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → 𝜑 ) ) ) |
| 80 | 79 | com23 | ⊢ ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) → ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → ( 𝑥 ⊊ 𝑦 → 𝜑 ) ) ) |
| 81 | 80 | alimdv | ⊢ ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) → ( ∀ 𝑥 ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → ∀ 𝑥 ( 𝑥 ⊊ 𝑦 → 𝜑 ) ) ) |
| 82 | 17 81 | biimtrid | ⊢ ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) → ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → ∀ 𝑥 ( 𝑥 ⊊ 𝑦 → 𝜑 ) ) ) |
| 83 | 13 82 3 | sylsyld | ⊢ ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) → ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → 𝜒 ) ) |
| 84 | 83 | impancom | ⊢ ( ( 𝑤 ∈ ω ∧ ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) → ( 𝑦 ≈ 𝑤 → 𝜒 ) ) |
| 85 | 84 | alrimiv | ⊢ ( ( 𝑤 ∈ ω ∧ ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) → ∀ 𝑦 ( 𝑦 ≈ 𝑤 → 𝜒 ) ) |
| 86 | 85 | expcom | ⊢ ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → ( 𝑤 ∈ ω → ∀ 𝑦 ( 𝑦 ≈ 𝑤 → 𝜒 ) ) ) |
| 87 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≈ 𝑤 ↔ 𝑦 ≈ 𝑤 ) ) | |
| 88 | 87 1 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ( 𝑦 ≈ 𝑤 → 𝜒 ) ) ) |
| 89 | 88 | cbvalvw | ⊢ ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ≈ 𝑤 → 𝜒 ) ) |
| 90 | 86 89 | imbitrrdi | ⊢ ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → ( 𝑤 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ) ) |
| 91 | 90 | a1i | ⊢ ( 𝑤 ∈ On → ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → ( 𝑤 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ) ) ) |
| 92 | 10 91 | tfis2 | ⊢ ( 𝑤 ∈ On → ( 𝑤 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ) ) |
| 93 | 5 92 | mpcom | ⊢ ( 𝑤 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ) |
| 94 | 93 | rgen | ⊢ ∀ 𝑤 ∈ ω ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) |
| 95 | r19.29 | ⊢ ( ( ∀ 𝑤 ∈ ω ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ∧ ∃ 𝑤 ∈ ω 𝐴 ≈ 𝑤 ) → ∃ 𝑤 ∈ ω ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ∧ 𝐴 ≈ 𝑤 ) ) | |
| 96 | 94 95 | mpan | ⊢ ( ∃ 𝑤 ∈ ω 𝐴 ≈ 𝑤 → ∃ 𝑤 ∈ ω ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ∧ 𝐴 ≈ 𝑤 ) ) |
| 97 | 4 96 | sylbi | ⊢ ( 𝐴 ∈ Fin → ∃ 𝑤 ∈ ω ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ∧ 𝐴 ≈ 𝑤 ) ) |
| 98 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≈ 𝑤 ↔ 𝐴 ≈ 𝑤 ) ) | |
| 99 | 98 2 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ( 𝐴 ≈ 𝑤 → 𝜏 ) ) ) |
| 100 | 99 | spcgv | ⊢ ( 𝐴 ∈ Fin → ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) → ( 𝐴 ≈ 𝑤 → 𝜏 ) ) ) |
| 101 | 100 | impd | ⊢ ( 𝐴 ∈ Fin → ( ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ∧ 𝐴 ≈ 𝑤 ) → 𝜏 ) ) |
| 102 | 101 | rexlimdvw | ⊢ ( 𝐴 ∈ Fin → ( ∃ 𝑤 ∈ ω ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ∧ 𝐴 ≈ 𝑤 ) → 𝜏 ) ) |
| 103 | 97 102 | mpd | ⊢ ( 𝐴 ∈ Fin → 𝜏 ) |