This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Schema for strong induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on any proper subset. The result is then proven to be true for all finite sets. (Contributed by Mario Carneiro, 13-Dec-2013) Avoid ax-pow . (Revised by BTernaryTau, 7-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | findcard3.1 | |- ( x = y -> ( ph <-> ch ) ) |
|
| findcard3.2 | |- ( x = A -> ( ph <-> ta ) ) |
||
| findcard3.3 | |- ( y e. Fin -> ( A. x ( x C. y -> ph ) -> ch ) ) |
||
| Assertion | findcard3 | |- ( A e. Fin -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | findcard3.1 | |- ( x = y -> ( ph <-> ch ) ) |
|
| 2 | findcard3.2 | |- ( x = A -> ( ph <-> ta ) ) |
|
| 3 | findcard3.3 | |- ( y e. Fin -> ( A. x ( x C. y -> ph ) -> ch ) ) |
|
| 4 | isfi | |- ( A e. Fin <-> E. w e. _om A ~~ w ) |
|
| 5 | nnon | |- ( w e. _om -> w e. On ) |
|
| 6 | eleq1w | |- ( w = z -> ( w e. _om <-> z e. _om ) ) |
|
| 7 | breq2 | |- ( w = z -> ( x ~~ w <-> x ~~ z ) ) |
|
| 8 | 7 | imbi1d | |- ( w = z -> ( ( x ~~ w -> ph ) <-> ( x ~~ z -> ph ) ) ) |
| 9 | 8 | albidv | |- ( w = z -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ z -> ph ) ) ) |
| 10 | 6 9 | imbi12d | |- ( w = z -> ( ( w e. _om -> A. x ( x ~~ w -> ph ) ) <-> ( z e. _om -> A. x ( x ~~ z -> ph ) ) ) ) |
| 11 | rspe | |- ( ( w e. _om /\ y ~~ w ) -> E. w e. _om y ~~ w ) |
|
| 12 | isfi | |- ( y e. Fin <-> E. w e. _om y ~~ w ) |
|
| 13 | 11 12 | sylibr | |- ( ( w e. _om /\ y ~~ w ) -> y e. Fin ) |
| 14 | 19.21v | |- ( A. x ( z e. _om -> ( x ~~ z -> ph ) ) <-> ( z e. _om -> A. x ( x ~~ z -> ph ) ) ) |
|
| 15 | 14 | ralbii | |- ( A. z e. w A. x ( z e. _om -> ( x ~~ z -> ph ) ) <-> A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) ) |
| 16 | ralcom4 | |- ( A. z e. w A. x ( z e. _om -> ( x ~~ z -> ph ) ) <-> A. x A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) ) |
|
| 17 | 15 16 | bitr3i | |- ( A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) <-> A. x A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) ) |
| 18 | pssss | |- ( x C. y -> x C_ y ) |
|
| 19 | ssfi | |- ( ( y e. Fin /\ x C_ y ) -> x e. Fin ) |
|
| 20 | isfi | |- ( x e. Fin <-> E. z e. _om x ~~ z ) |
|
| 21 | 19 20 | sylib | |- ( ( y e. Fin /\ x C_ y ) -> E. z e. _om x ~~ z ) |
| 22 | 13 18 21 | syl2an | |- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> E. z e. _om x ~~ z ) |
| 23 | simprl | |- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> z e. _om ) |
|
| 24 | nnfi | |- ( z e. _om -> z e. Fin ) |
|
| 25 | ensymfib | |- ( z e. Fin -> ( z ~~ x <-> x ~~ z ) ) |
|
| 26 | 24 25 | syl | |- ( z e. _om -> ( z ~~ x <-> x ~~ z ) ) |
| 27 | 26 | biimpar | |- ( ( z e. _om /\ x ~~ z ) -> z ~~ x ) |
| 28 | 27 | adantl | |- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> z ~~ x ) |
| 29 | simplll | |- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> w e. _om ) |
|
| 30 | php3 | |- ( ( y e. Fin /\ x C. y ) -> x ~< y ) |
|
| 31 | 13 30 | sylan | |- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> x ~< y ) |
| 32 | 31 | adantr | |- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> x ~< y ) |
| 33 | simpllr | |- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> y ~~ w ) |
|
| 34 | endom | |- ( y ~~ w -> y ~<_ w ) |
|
| 35 | nnfi | |- ( w e. _om -> w e. Fin ) |
|
| 36 | domfi | |- ( ( w e. Fin /\ y ~<_ w ) -> y e. Fin ) |
|
| 37 | 35 36 | sylan | |- ( ( w e. _om /\ y ~<_ w ) -> y e. Fin ) |
| 38 | 37 | 3adant2 | |- ( ( w e. _om /\ x ~< y /\ y ~<_ w ) -> y e. Fin ) |
| 39 | sdomdom | |- ( x ~< y -> x ~<_ y ) |
|
| 40 | domfi | |- ( ( y e. Fin /\ x ~<_ y ) -> x e. Fin ) |
|
| 41 | 39 40 | sylan2 | |- ( ( y e. Fin /\ x ~< y ) -> x e. Fin ) |
| 42 | 41 | 3adant3 | |- ( ( y e. Fin /\ x ~< y /\ y ~<_ w ) -> x e. Fin ) |
| 43 | 38 42 | syld3an1 | |- ( ( w e. _om /\ x ~< y /\ y ~<_ w ) -> x e. Fin ) |
| 44 | sdomdomtrfi | |- ( ( x e. Fin /\ x ~< y /\ y ~<_ w ) -> x ~< w ) |
|
| 45 | 43 44 | syld3an1 | |- ( ( w e. _om /\ x ~< y /\ y ~<_ w ) -> x ~< w ) |
| 46 | 34 45 | syl3an3 | |- ( ( w e. _om /\ x ~< y /\ y ~~ w ) -> x ~< w ) |
| 47 | 29 32 33 46 | syl3anc | |- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> x ~< w ) |
| 48 | endom | |- ( z ~~ x -> z ~<_ x ) |
|
| 49 | domsdomtrfi | |- ( ( z e. Fin /\ z ~<_ x /\ x ~< w ) -> z ~< w ) |
|
| 50 | 24 49 | syl3an1 | |- ( ( z e. _om /\ z ~<_ x /\ x ~< w ) -> z ~< w ) |
| 51 | 48 50 | syl3an2 | |- ( ( z e. _om /\ z ~~ x /\ x ~< w ) -> z ~< w ) |
| 52 | 23 28 47 51 | syl3anc | |- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> z ~< w ) |
| 53 | nnsdomo | |- ( ( z e. _om /\ w e. _om ) -> ( z ~< w <-> z C. w ) ) |
|
| 54 | nnord | |- ( z e. _om -> Ord z ) |
|
| 55 | nnord | |- ( w e. _om -> Ord w ) |
|
| 56 | ordelpss | |- ( ( Ord z /\ Ord w ) -> ( z e. w <-> z C. w ) ) |
|
| 57 | 54 55 56 | syl2an | |- ( ( z e. _om /\ w e. _om ) -> ( z e. w <-> z C. w ) ) |
| 58 | 53 57 | bitr4d | |- ( ( z e. _om /\ w e. _om ) -> ( z ~< w <-> z e. w ) ) |
| 59 | 23 29 58 | syl2anc | |- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> ( z ~< w <-> z e. w ) ) |
| 60 | 52 59 | mpbid | |- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> z e. w ) |
| 61 | 60 | ex | |- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( ( z e. _om /\ x ~~ z ) -> z e. w ) ) |
| 62 | simpr | |- ( ( z e. _om /\ x ~~ z ) -> x ~~ z ) |
|
| 63 | 61 62 | jca2 | |- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( ( z e. _om /\ x ~~ z ) -> ( z e. w /\ x ~~ z ) ) ) |
| 64 | 63 | reximdv2 | |- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( E. z e. _om x ~~ z -> E. z e. w x ~~ z ) ) |
| 65 | 22 64 | mpd | |- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> E. z e. w x ~~ z ) |
| 66 | r19.29 | |- ( ( A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) /\ E. z e. w x ~~ z ) -> E. z e. w ( ( z e. _om -> ( x ~~ z -> ph ) ) /\ x ~~ z ) ) |
|
| 67 | 66 | expcom | |- ( E. z e. w x ~~ z -> ( A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) -> E. z e. w ( ( z e. _om -> ( x ~~ z -> ph ) ) /\ x ~~ z ) ) ) |
| 68 | 65 67 | syl | |- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) -> E. z e. w ( ( z e. _om -> ( x ~~ z -> ph ) ) /\ x ~~ z ) ) ) |
| 69 | ordom | |- Ord _om |
|
| 70 | ordelss | |- ( ( Ord _om /\ w e. _om ) -> w C_ _om ) |
|
| 71 | 69 70 | mpan | |- ( w e. _om -> w C_ _om ) |
| 72 | 71 | ad2antrr | |- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> w C_ _om ) |
| 73 | 72 | sseld | |- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( z e. w -> z e. _om ) ) |
| 74 | pm2.27 | |- ( z e. _om -> ( ( z e. _om -> ( x ~~ z -> ph ) ) -> ( x ~~ z -> ph ) ) ) |
|
| 75 | 74 | impd | |- ( z e. _om -> ( ( ( z e. _om -> ( x ~~ z -> ph ) ) /\ x ~~ z ) -> ph ) ) |
| 76 | 73 75 | syl6 | |- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( z e. w -> ( ( ( z e. _om -> ( x ~~ z -> ph ) ) /\ x ~~ z ) -> ph ) ) ) |
| 77 | 76 | rexlimdv | |- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( E. z e. w ( ( z e. _om -> ( x ~~ z -> ph ) ) /\ x ~~ z ) -> ph ) ) |
| 78 | 68 77 | syld | |- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) -> ph ) ) |
| 79 | 78 | ex | |- ( ( w e. _om /\ y ~~ w ) -> ( x C. y -> ( A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) -> ph ) ) ) |
| 80 | 79 | com23 | |- ( ( w e. _om /\ y ~~ w ) -> ( A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) -> ( x C. y -> ph ) ) ) |
| 81 | 80 | alimdv | |- ( ( w e. _om /\ y ~~ w ) -> ( A. x A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) -> A. x ( x C. y -> ph ) ) ) |
| 82 | 17 81 | biimtrid | |- ( ( w e. _om /\ y ~~ w ) -> ( A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) -> A. x ( x C. y -> ph ) ) ) |
| 83 | 13 82 3 | sylsyld | |- ( ( w e. _om /\ y ~~ w ) -> ( A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) -> ch ) ) |
| 84 | 83 | impancom | |- ( ( w e. _om /\ A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) ) -> ( y ~~ w -> ch ) ) |
| 85 | 84 | alrimiv | |- ( ( w e. _om /\ A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) ) -> A. y ( y ~~ w -> ch ) ) |
| 86 | 85 | expcom | |- ( A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) -> ( w e. _om -> A. y ( y ~~ w -> ch ) ) ) |
| 87 | breq1 | |- ( x = y -> ( x ~~ w <-> y ~~ w ) ) |
|
| 88 | 87 1 | imbi12d | |- ( x = y -> ( ( x ~~ w -> ph ) <-> ( y ~~ w -> ch ) ) ) |
| 89 | 88 | cbvalvw | |- ( A. x ( x ~~ w -> ph ) <-> A. y ( y ~~ w -> ch ) ) |
| 90 | 86 89 | imbitrrdi | |- ( A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) -> ( w e. _om -> A. x ( x ~~ w -> ph ) ) ) |
| 91 | 90 | a1i | |- ( w e. On -> ( A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) -> ( w e. _om -> A. x ( x ~~ w -> ph ) ) ) ) |
| 92 | 10 91 | tfis2 | |- ( w e. On -> ( w e. _om -> A. x ( x ~~ w -> ph ) ) ) |
| 93 | 5 92 | mpcom | |- ( w e. _om -> A. x ( x ~~ w -> ph ) ) |
| 94 | 93 | rgen | |- A. w e. _om A. x ( x ~~ w -> ph ) |
| 95 | r19.29 | |- ( ( A. w e. _om A. x ( x ~~ w -> ph ) /\ E. w e. _om A ~~ w ) -> E. w e. _om ( A. x ( x ~~ w -> ph ) /\ A ~~ w ) ) |
|
| 96 | 94 95 | mpan | |- ( E. w e. _om A ~~ w -> E. w e. _om ( A. x ( x ~~ w -> ph ) /\ A ~~ w ) ) |
| 97 | 4 96 | sylbi | |- ( A e. Fin -> E. w e. _om ( A. x ( x ~~ w -> ph ) /\ A ~~ w ) ) |
| 98 | breq1 | |- ( x = A -> ( x ~~ w <-> A ~~ w ) ) |
|
| 99 | 98 2 | imbi12d | |- ( x = A -> ( ( x ~~ w -> ph ) <-> ( A ~~ w -> ta ) ) ) |
| 100 | 99 | spcgv | |- ( A e. Fin -> ( A. x ( x ~~ w -> ph ) -> ( A ~~ w -> ta ) ) ) |
| 101 | 100 | impd | |- ( A e. Fin -> ( ( A. x ( x ~~ w -> ph ) /\ A ~~ w ) -> ta ) ) |
| 102 | 101 | rexlimdvw | |- ( A e. Fin -> ( E. w e. _om ( A. x ( x ~~ w -> ph ) /\ A ~~ w ) -> ta ) ) |
| 103 | 97 102 | mpd | |- ( A e. Fin -> ta ) |