This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a filter on a domain, produce a filter on the range. (Contributed by Jeff Hankins, 7-Sep-2009) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fbasrn.c | ⊢ 𝐶 = ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) | |
| Assertion | fbasrn | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐶 ∈ ( fBas ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fbasrn.c | ⊢ 𝐶 = ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) | |
| 2 | simpl3 | ⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑌 ∈ 𝑉 ) | |
| 3 | simpl2 | ⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 4 | fimass | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( 𝐹 “ 𝑥 ) ⊆ 𝑌 ) | |
| 5 | 3 4 | syl | ⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ 𝑥 ) ⊆ 𝑌 ) |
| 6 | 2 5 | sselpwd | ⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ 𝑥 ) ∈ 𝒫 𝑌 ) |
| 7 | 6 | fmpttd | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐵 ⟶ 𝒫 𝑌 ) |
| 8 | 7 | frnd | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ⊆ 𝒫 𝑌 ) |
| 9 | 1 8 | eqsstrid | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐶 ⊆ 𝒫 𝑌 ) |
| 10 | 1 | a1i | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐶 = ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ) |
| 11 | ffun | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → Fun 𝐹 ) | |
| 12 | 11 | 3ad2ant2 | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → Fun 𝐹 ) |
| 13 | funimaexg | ⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ 𝑥 ) ∈ V ) | |
| 14 | 13 | ralrimiva | ⊢ ( Fun 𝐹 → ∀ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑥 ) ∈ V ) |
| 15 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑥 ) ∈ V → dom ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = 𝐵 ) | |
| 16 | 12 14 15 | 3syl | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → dom ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = 𝐵 ) |
| 17 | fbasne0 | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → 𝐵 ≠ ∅ ) | |
| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐵 ≠ ∅ ) |
| 19 | 16 18 | eqnetrd | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → dom ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ≠ ∅ ) |
| 20 | dm0rn0 | ⊢ ( dom ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = ∅ ↔ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = ∅ ) | |
| 21 | 20 | necon3bii | ⊢ ( dom ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ≠ ∅ ↔ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ≠ ∅ ) |
| 22 | 19 21 | sylib | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ≠ ∅ ) |
| 23 | 10 22 | eqnetrd | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐶 ≠ ∅ ) |
| 24 | fbelss | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ⊆ 𝑋 ) | |
| 25 | 24 | ex | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝑋 ) ) |
| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝑋 ) ) |
| 27 | 0nelfb | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ¬ ∅ ∈ 𝐵 ) | |
| 28 | eleq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ 𝐵 ↔ ∅ ∈ 𝐵 ) ) | |
| 29 | 28 | notbid | ⊢ ( 𝑥 = ∅ → ( ¬ 𝑥 ∈ 𝐵 ↔ ¬ ∅ ∈ 𝐵 ) ) |
| 30 | 27 29 | syl5ibrcom | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 = ∅ → ¬ 𝑥 ∈ 𝐵 ) ) |
| 31 | 30 | con2d | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 ∈ 𝐵 → ¬ 𝑥 = ∅ ) ) |
| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐵 → ¬ 𝑥 = ∅ ) ) |
| 33 | 26 32 | jcad | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐵 → ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 = ∅ ) ) ) |
| 34 | fdm | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → dom 𝐹 = 𝑋 ) | |
| 35 | 34 | 3ad2ant2 | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → dom 𝐹 = 𝑋 ) |
| 36 | 35 | sseq2d | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑥 ⊆ dom 𝐹 ↔ 𝑥 ⊆ 𝑋 ) ) |
| 37 | 36 | biimpar | ⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ⊆ 𝑋 ) → 𝑥 ⊆ dom 𝐹 ) |
| 38 | sseqin2 | ⊢ ( 𝑥 ⊆ dom 𝐹 ↔ ( dom 𝐹 ∩ 𝑥 ) = 𝑥 ) | |
| 39 | 37 38 | sylib | ⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ⊆ 𝑋 ) → ( dom 𝐹 ∩ 𝑥 ) = 𝑥 ) |
| 40 | 39 | eqeq1d | ⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( dom 𝐹 ∩ 𝑥 ) = ∅ ↔ 𝑥 = ∅ ) ) |
| 41 | 40 | biimpd | ⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( dom 𝐹 ∩ 𝑥 ) = ∅ → 𝑥 = ∅ ) ) |
| 42 | 41 | con3d | ⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 = ∅ → ¬ ( dom 𝐹 ∩ 𝑥 ) = ∅ ) ) |
| 43 | 42 | expimpd | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 = ∅ ) → ¬ ( dom 𝐹 ∩ 𝑥 ) = ∅ ) ) |
| 44 | eqcom | ⊢ ( ∅ = ( 𝐹 “ 𝑥 ) ↔ ( 𝐹 “ 𝑥 ) = ∅ ) | |
| 45 | imadisj | ⊢ ( ( 𝐹 “ 𝑥 ) = ∅ ↔ ( dom 𝐹 ∩ 𝑥 ) = ∅ ) | |
| 46 | 44 45 | bitri | ⊢ ( ∅ = ( 𝐹 “ 𝑥 ) ↔ ( dom 𝐹 ∩ 𝑥 ) = ∅ ) |
| 47 | 46 | notbii | ⊢ ( ¬ ∅ = ( 𝐹 “ 𝑥 ) ↔ ¬ ( dom 𝐹 ∩ 𝑥 ) = ∅ ) |
| 48 | 43 47 | imbitrrdi | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 = ∅ ) → ¬ ∅ = ( 𝐹 “ 𝑥 ) ) ) |
| 49 | 33 48 | syld | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐵 → ¬ ∅ = ( 𝐹 “ 𝑥 ) ) ) |
| 50 | 49 | ralrimiv | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝐵 ¬ ∅ = ( 𝐹 “ 𝑥 ) ) |
| 51 | 1 | eleq2i | ⊢ ( ∅ ∈ 𝐶 ↔ ∅ ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ) |
| 52 | 0ex | ⊢ ∅ ∈ V | |
| 53 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) | |
| 54 | 53 | elrnmpt | ⊢ ( ∅ ∈ V → ( ∅ ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ∅ = ( 𝐹 “ 𝑥 ) ) ) |
| 55 | 52 54 | ax-mp | ⊢ ( ∅ ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ∅ = ( 𝐹 “ 𝑥 ) ) |
| 56 | 51 55 | bitri | ⊢ ( ∅ ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 ∅ = ( 𝐹 “ 𝑥 ) ) |
| 57 | 56 | notbii | ⊢ ( ¬ ∅ ∈ 𝐶 ↔ ¬ ∃ 𝑥 ∈ 𝐵 ∅ = ( 𝐹 “ 𝑥 ) ) |
| 58 | df-nel | ⊢ ( ∅ ∉ 𝐶 ↔ ¬ ∅ ∈ 𝐶 ) | |
| 59 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐵 ¬ ∅ = ( 𝐹 “ 𝑥 ) ↔ ¬ ∃ 𝑥 ∈ 𝐵 ∅ = ( 𝐹 “ 𝑥 ) ) | |
| 60 | 57 58 59 | 3bitr4i | ⊢ ( ∅ ∉ 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 ¬ ∅ = ( 𝐹 “ 𝑥 ) ) |
| 61 | 50 60 | sylibr | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ∅ ∉ 𝐶 ) |
| 62 | 1 | eleq2i | ⊢ ( 𝑟 ∈ 𝐶 ↔ 𝑟 ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ) |
| 63 | imaeq2 | ⊢ ( 𝑥 = 𝑢 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑢 ) ) | |
| 64 | 63 | cbvmptv | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑢 ∈ 𝐵 ↦ ( 𝐹 “ 𝑢 ) ) |
| 65 | 64 | elrnmpt | ⊢ ( 𝑟 ∈ V → ( 𝑟 ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑢 ∈ 𝐵 𝑟 = ( 𝐹 “ 𝑢 ) ) ) |
| 66 | 65 | elv | ⊢ ( 𝑟 ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑢 ∈ 𝐵 𝑟 = ( 𝐹 “ 𝑢 ) ) |
| 67 | 62 66 | bitri | ⊢ ( 𝑟 ∈ 𝐶 ↔ ∃ 𝑢 ∈ 𝐵 𝑟 = ( 𝐹 “ 𝑢 ) ) |
| 68 | 1 | eleq2i | ⊢ ( 𝑠 ∈ 𝐶 ↔ 𝑠 ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ) |
| 69 | imaeq2 | ⊢ ( 𝑥 = 𝑣 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑣 ) ) | |
| 70 | 69 | cbvmptv | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑣 ∈ 𝐵 ↦ ( 𝐹 “ 𝑣 ) ) |
| 71 | 70 | elrnmpt | ⊢ ( 𝑠 ∈ V → ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑣 ∈ 𝐵 𝑠 = ( 𝐹 “ 𝑣 ) ) ) |
| 72 | 71 | elv | ⊢ ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑣 ∈ 𝐵 𝑠 = ( 𝐹 “ 𝑣 ) ) |
| 73 | 68 72 | bitri | ⊢ ( 𝑠 ∈ 𝐶 ↔ ∃ 𝑣 ∈ 𝐵 𝑠 = ( 𝐹 “ 𝑣 ) ) |
| 74 | 67 73 | anbi12i | ⊢ ( ( 𝑟 ∈ 𝐶 ∧ 𝑠 ∈ 𝐶 ) ↔ ( ∃ 𝑢 ∈ 𝐵 𝑟 = ( 𝐹 “ 𝑢 ) ∧ ∃ 𝑣 ∈ 𝐵 𝑠 = ( 𝐹 “ 𝑣 ) ) ) |
| 75 | reeanv | ⊢ ( ∃ 𝑢 ∈ 𝐵 ∃ 𝑣 ∈ 𝐵 ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ↔ ( ∃ 𝑢 ∈ 𝐵 𝑟 = ( 𝐹 “ 𝑢 ) ∧ ∃ 𝑣 ∈ 𝐵 𝑠 = ( 𝐹 “ 𝑣 ) ) ) | |
| 76 | 74 75 | bitr4i | ⊢ ( ( 𝑟 ∈ 𝐶 ∧ 𝑠 ∈ 𝐶 ) ↔ ∃ 𝑢 ∈ 𝐵 ∃ 𝑣 ∈ 𝐵 ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) |
| 77 | fbasssin | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ∃ 𝑤 ∈ 𝐵 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) | |
| 78 | 77 | 3expb | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ∃ 𝑤 ∈ 𝐵 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) |
| 79 | 78 | 3ad2antl1 | ⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ∃ 𝑤 ∈ 𝐵 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) |
| 80 | 79 | adantrr | ⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ) → ∃ 𝑤 ∈ 𝐵 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) |
| 81 | eqid | ⊢ ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑤 ) | |
| 82 | imaeq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑤 ) ) | |
| 83 | 82 | rspceeqv | ⊢ ( ( 𝑤 ∈ 𝐵 ∧ ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑤 ) ) → ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) |
| 84 | 81 83 | mpan2 | ⊢ ( 𝑤 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) |
| 85 | 84 | ad2antrl | ⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) |
| 86 | 1 | eleq2i | ⊢ ( ( 𝐹 “ 𝑤 ) ∈ 𝐶 ↔ ( 𝐹 “ 𝑤 ) ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ) |
| 87 | vex | ⊢ 𝑤 ∈ V | |
| 88 | 87 | funimaex | ⊢ ( Fun 𝐹 → ( 𝐹 “ 𝑤 ) ∈ V ) |
| 89 | 53 | elrnmpt | ⊢ ( ( 𝐹 “ 𝑤 ) ∈ V → ( ( 𝐹 “ 𝑤 ) ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) ) |
| 90 | 12 88 89 | 3syl | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝐹 “ 𝑤 ) ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) ) |
| 91 | 86 90 | bitrid | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝐹 “ 𝑤 ) ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) ) |
| 92 | 91 | ad2antrr | ⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ( ( 𝐹 “ 𝑤 ) ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) ) |
| 93 | 85 92 | mpbird | ⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ( 𝐹 “ 𝑤 ) ∈ 𝐶 ) |
| 94 | imass2 | ⊢ ( 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) → ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ) | |
| 95 | 94 | ad2antll | ⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ) |
| 96 | inss1 | ⊢ ( 𝑢 ∩ 𝑣 ) ⊆ 𝑢 | |
| 97 | imass2 | ⊢ ( ( 𝑢 ∩ 𝑣 ) ⊆ 𝑢 → ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝐹 “ 𝑢 ) ) | |
| 98 | 96 97 | ax-mp | ⊢ ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝐹 “ 𝑢 ) |
| 99 | inss2 | ⊢ ( 𝑢 ∩ 𝑣 ) ⊆ 𝑣 | |
| 100 | imass2 | ⊢ ( ( 𝑢 ∩ 𝑣 ) ⊆ 𝑣 → ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝐹 “ 𝑣 ) ) | |
| 101 | 99 100 | ax-mp | ⊢ ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝐹 “ 𝑣 ) |
| 102 | 98 101 | ssini | ⊢ ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( ( 𝐹 “ 𝑢 ) ∩ ( 𝐹 “ 𝑣 ) ) |
| 103 | ineq12 | ⊢ ( ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) → ( 𝑟 ∩ 𝑠 ) = ( ( 𝐹 “ 𝑢 ) ∩ ( 𝐹 “ 𝑣 ) ) ) | |
| 104 | 103 | ad2antlr | ⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ( 𝑟 ∩ 𝑠 ) = ( ( 𝐹 “ 𝑢 ) ∩ ( 𝐹 “ 𝑣 ) ) ) |
| 105 | 102 104 | sseqtrrid | ⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 106 | 95 105 | sstrd | ⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ( 𝐹 “ 𝑤 ) ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 107 | sseq1 | ⊢ ( 𝑧 = ( 𝐹 “ 𝑤 ) → ( 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ↔ ( 𝐹 “ 𝑤 ) ⊆ ( 𝑟 ∩ 𝑠 ) ) ) | |
| 108 | 107 | rspcev | ⊢ ( ( ( 𝐹 “ 𝑤 ) ∈ 𝐶 ∧ ( 𝐹 “ 𝑤 ) ⊆ ( 𝑟 ∩ 𝑠 ) ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 109 | 93 106 108 | syl2anc | ⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 110 | 109 | adantlrl | ⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 111 | 80 110 | rexlimddv | ⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 112 | 111 | exp32 | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ( ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) ) |
| 113 | 112 | rexlimdvv | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ∃ 𝑢 ∈ 𝐵 ∃ 𝑣 ∈ 𝐵 ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 114 | 76 113 | biimtrid | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑟 ∈ 𝐶 ∧ 𝑠 ∈ 𝐶 ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 115 | 114 | ralrimivv | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ∀ 𝑟 ∈ 𝐶 ∀ 𝑠 ∈ 𝐶 ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 116 | 23 61 115 | 3jca | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐶 ≠ ∅ ∧ ∅ ∉ 𝐶 ∧ ∀ 𝑟 ∈ 𝐶 ∀ 𝑠 ∈ 𝐶 ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 117 | isfbas2 | ⊢ ( 𝑌 ∈ 𝑉 → ( 𝐶 ∈ ( fBas ‘ 𝑌 ) ↔ ( 𝐶 ⊆ 𝒫 𝑌 ∧ ( 𝐶 ≠ ∅ ∧ ∅ ∉ 𝐶 ∧ ∀ 𝑟 ∈ 𝐶 ∀ 𝑠 ∈ 𝐶 ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) ) ) | |
| 118 | 117 | 3ad2ant3 | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐶 ∈ ( fBas ‘ 𝑌 ) ↔ ( 𝐶 ⊆ 𝒫 𝑌 ∧ ( 𝐶 ≠ ∅ ∧ ∅ ∉ 𝐶 ∧ ∀ 𝑟 ∈ 𝐶 ∀ 𝑠 ∈ 𝐶 ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) ) ) |
| 119 | 9 116 118 | mpbir2and | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐶 ∈ ( fBas ‘ 𝑌 ) ) |